[1]Pan Y N, Chang W S, Chang R M. Optimal heat treatment conditions and properties of bimetal (high Cr cast iron/alloyed steel) hammers[J]. International Journal of Cast Metals Research, 2008, 21: 71-75. [2]种晓宇, 汪广驰, 蒋业华, 等. 耐磨钢铁材料中强化相设计与性质计算研究进展[J]. 中国材料进展, 2019, 38(12): 1145-1158. Zhong Xiaoyu, Wang Guangchi, Jiang Yehua, et al. Research progress in design and property calculation of strengthening phases in wear-resistant steels materials[J]. Materials China, 2019, 38(12): 1145-1158. [3]魏世忠, 徐流杰. 钢铁耐磨材料研究进展[J]. 金属学报, 2020, 56(4): 523-538. Wei Shizhong, Xu Liujie. Review on research progress of steel and iron wear-resistant materials[J]. Acta Metallurgica Sinica, 2020, 56(4): 523-538. [4]Jiang Z Q, Du J M, Feng X L. Study and application of heat treatment of multi-element wear-resistant low-alloy steel[J]. Journal of Iron and Steel Research International, 2006, 13: 57-61. [5]周志丹, 陈 烜, 刘金龙. 提高挖掘机斗齿寿命的研究现状和发展[J]. 煤矿机械, 2011, 32(3): 7-9. Zhou Zhidan, Chen Xuan, Liu Jinlong. Study on development and improving lifetime of excavator teeth[J]. Coal Mine Machinery, 2011, 32(3): 7-9. [6]黄 龙, 邓想涛, 王昭东. 回火温度对颗粒增强型低合金耐磨钢组织和性能的影响[J]. 金属热处理, 2022, 47(3): 1-6. Huang Long, Deng Xiangtao, Wang Zhaodong. Effect of tempering temperature on microstructure and properties of particle reinforced low-alloyed wear resistant steel[J]. Heat Treatment of Metals, 2022, 47(3): 1-6. [7]Li C, Deng X, Huang L, et al. Effect of temperature on microstructure, properties and sliding wear behavior of low alloy wear-resistant martensitic steel[J]. Wear, 2020, 442: 203125. [8]Zhang C, Li Z, Li Y, et al. Study on mechanical properties and microstructure of the ultrastrong low alloy wear-resistant steel[J]. Steel Research International, 2020, 92(1): 2000155. [9]王明娣, 刘东权, 武会宾. 淬火工艺对低合金耐磨钢组织与力学性能的影响[J]. 金属热处理, 2018, 43(8): 156-161. Wang Mingdi, Liu Dongquan, Wu Huibin. Influence of quenching on microstructure and mechanical properties of low alloy wear-resistant steel[J]. Heat Treatment of Metals, 2018, 43(8): 156-161. [10]Autay R, Kchaou M, Dammak F. Friction and wear behaviour of induction hardened ISO 42CrMo4 low-alloy steel under reciprocating sliding conditions[J]. Proceedings of the Institution of Mechanical Engineers, 2014, 229(2): 115-125. [11]Keleş A, Yildirim M. Improvement of mechanical properties by means of titanium alloying to steel teeth used in the excavator[J]. Engineering Science and Technology, an International Journal, 2020, 23(5): 1208-1213. [12]谢志勇, 朱娟芬, 李 鑫, 等. 挖掘机斗齿用40Cr钢的半锻造余热淬火工艺研究[J]. 矿冶工程, 2022, 42(2): 125-127, 131. Xie Zhiyong, Zhu Juanfen, Li Xin, et al. Semi-forging-remnant-heat quenching technology for excavator dipper teeth produced from 40Cr steel[J]. Mining and Metallurgical Engineering, 2022, 42(2): 125-127, 131. [13]Bolobov V I, Chupin S A, Bochkov V S, et al. The effect of finely divided martensite of austenitic high manganese steel on the wear resistance of the excavator buckets teeth[C]//Key Engineering Materials. Trans Tech Publications Ltd, 2020, 854: 3-9. [14]付锡彬, 陈子豪, 张 可, 等. 淬火温度对高Ti低合金耐磨钢组织及力学性能的影响[J]. 金属热处理, 2022, 47(4): 122-128. Fu Xibin, Chen Zihao, Zhang Ke, et al. Effect of quenching temperature on microstructure and mechanical properties of high Ti low alloy wear-resistant steel[J]. Heat Treatment of Metals, 2022, 47(4): 122-128. [15]蒋 辉, 赵爱民, 裴 伟, 等. 低合金耐磨钢的CCT曲线与马氏体相变原位观察[J]. 材料热处理学报, 2022, 43(11): 143-150. Jiang Hui, Zhao Aimin, Pei Wei, et al. Continuous cooling transformation curve of low alloy wear-resistant steel and in-situ observation of its martensitic transformation[J]. Transactions of Materials and Heat Treatment, 2022, 43(11): 143-150. [16]赵云冲, 杨兴亚, 龙伟漾, 等. 热处理工艺对TBM刀盘低合金耐磨钢的耐磨性影响研究[J]. 热加工工艺, 2020, 49(12): 135-137. Zhao Yunchong, Yang Xingya, Long Weiyang, et al. Effect of heat treatment process on wear resistance of TBM cutter head of low alloy wear resistant steel[J]. Hot Working Technology, 2020, 49(12): 135-137. [17]Wang X, Chen Y, Wei S, et al. Effect of carbon content on abrasive impact wear behavior of Cr-Si-Mn low alloy wear resistant cast steels[J]. Frontiers in Materials, 2019, 6: 153. [18]王宇飞, 智爱娟, 张冠峰, 等. 锻造斗齿的热处理工艺及组织性能[J]. 金属热处理, 2020, 45(1): 188-192. Wang Yufei, Zhi Aijuan, Zhang Guanfeng, et al. Heat treatment process of forged bucket tooth and its microstructure and properties[J]. Heat Treatment of Metals, 2020, 45(1): 188-192. [19]Dong C, Wu H, Wang X. Effect of tempering temperatures on microstructures and properties of 0.28C-0.22Ti wear-resistant steel[J]. Materials Science and Technology, 2017, 34(1): 86-94. [20]Hernandez S, Leiro A, Ripoll M R, et al. High temperature three-body abrasive wear of 0.25C1.42Si steel with carbide free bainitic (CFB) and martensitic microstructures[J]. Wear, 2016, 360: 21-28. [21]Bansal G K, Rajinikanth V, Ghosh C, et al. Microstructure-property correlation in low-Si steel processed through quenching and nonisothermal partitioning[J]. Metallurgical and Materials Transactions A, 2018, 49: 3501-3514. [22]Shuitcev A, Vasin R N, Balagurov А M, et al. Thermal expansion of martensite in Ti29.7Ni50.3Hf20 shape memory alloy[J]. Intermetallics, 2020, 125: 106889. [23]Zhang M, Baxevanis T. Tailoring the anisotropic (positive/zero/negative) thermal expansion in shape memory alloys through phase transformation and martensite (re)orientation[J]. International Journal of Engineering Science, 2022, 177: 103687. [24]李 涛, 许 涛, 韩 强, 等. 热处理对稀土5Cr钢组织及析出相的影响[J]. 金属热处理, 2022, 47(12): 56-61. Li Tao, Xu Tao, Han Qiang, et al. Effect of heat treatment on microstructure and precipitates of 5Cr steel with RE addition[J]. Heat Treatment of Metals, 2022, 47(12): 56-61. [25]崔 毅, 崔继红, 王 艳, 等. 淬火工艺对GCr4Mo4V钢组织及耐磨性的影响[J]. 金属热处理, 2023, 48(9): 23-29. Cui Yi, Cui Jihong, Wang Yan, et al. Influence of quenching process on microstructure and wear resistance of GCr4Mo4V steel[J]. Heat Treatment of Metals, 2023, 48(9): 23-29. |