[1]Unal O, Maleki E, Varol R. Comprehensive analysis of pulsed plasma nitriding preconditions on the fatigue behavior of AISI 304 austenitic stainless steel[J]. International Journal of Minerals Metallurgy and Materials, 2021, 28(4): 657-664. [2]Li Yang, Xu Huizhong, Zhu Feng, et al. Low temperature anodic nitriding of AISI304 austenitic stainless steel[J]. Materials Letters, 2014, 128: 231-234. [3]孙 斐, 胡佳佳, 王树凯, 等. 气压对304奥氏体不锈钢低温离子渗氮组织与性能影响[J]. 材料热处理学报, 2014, 35(S2): 221-225. Sun Fei, Hu Jiajia, Wang Shukai, et al. Effect of gas pressure in low temperature plasma nitriding on the microstructure and properties for 304 austenitic stainless steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(S2): 221-225. [4]Borgioli F, Galvanetto E, Bacct T. Low temperature nitriding of AISI300 and 200 series austenitic stainless steels[J]. Vacuum, 2016, 127: 51-60. [5]Lu Yangyang, Wu Jiqiang, Wei Kunxia, et al. Dynamic equilibrium of the surface oxide film during plasma oxynitrocarburising and its effect on performances[J]. Journal of Materials Research and Technology, 2022, 20: 2271-2276. [6]吴梦泽, 李烈军, 彭继华. 氢氮比对奥氏体不锈钢低温离子渗氮性能的影响[J]. 材料热处理学报, 2018, 39(9): 105-112. Wu Mengze, Li Liejun, Peng Jihua. Effect of hydrogen to nitrogen ratio on low temperature ion nitriding of austenitic stainless steel[J]. Transactions of Materials and Heat Treatment, 2018, 39(9): 105-112. [7]Li Dong, Wu Jiqiang, Miao Bin, et al. Enhancement of wear resistance by sand blasting-assisted rapid plasma nitriding for 304 austenitic stainless steel[J]. Surface Engineering, 2020, 36(5): 524-530. [8]Wang Liang. Surface modification of AISI304 austenitic stainless steel by plasma nitriding[J]. Applied Surface Science, 2003, 211: 308-314. [9]Wang Shukai, Cai Wei, Li Jingcai, et al. A novel rapid D. C. plasma nitriding at low gas pressure for 304 austenitic stainless steel[J]. Materials Letters, 2013, 105: 47-49. [10]Amuth S, Sasidhar K N, Meka S R. High nitrogen alloying of AISI 316L stainless steel powder by nitriding[J]. Powder Technology, 2021, 390(693): 456-463. [11]钟 厉, 王帅峰, 门昕皓, 等. 38CrMoAl钢钛改性等离子氮化工艺研究[J]. 表面技术, 2021, 50(12): 159-166. Zhong Li, Wang Shuaifeng, Men Xinhao, et al. Research on plasma nitriding process of 38CrMoAl steel with Ti catalyst[J]. Surface Technology, 2021, 50(12): 159-166. [12]李小英, 田林海, 窦文博, 等. 经济型双相不锈钢的离子氮化及其组织结构和腐蚀磨损性能[J]. 中国表面工程, 2015, 28(3): 1-9. Li Xiaoying, Tian Linhai, Dou Wenbo, et al. Microstructure and corrosion wear resistance of plasma nitrided lean duplex stainless steel[J]. China Surface Engineering, 2015, 28(3): 1-9. [13]Shen Lie, Wang Liang, Wang Yizuo, et al. Plasma nitriding of AISI304 austenitic stainless steel with pre-shot peening[J]. Surface and Coatings Technology, 2010, 204(20): 3222-3227. [14]毛长军, 魏坤霞, 刘细良, 等. 微量钛对离子渗氮渗层特性及性能的影响[J]. 中国表面工程, 2020, 33(1): 34-38. Mao Changjun, Wei Kunxia, Liu Xiliang, et al. Effects of trace titanium on characteristics and properties of plasma nitriding layer[J]. China Surface Engineering, 2020, 33(1): 34-38. [15]张乘玮, 付天琳, 陈涵悦, 等. 钛合金缝隙腐蚀、离子渗氮与表面纳米化的研究进展[J]. 表面技术, 2019, 48(11): 114-123. Zhang Chengwei, Fu Tianlin, Chen Hanyue, et al. Research progress on crevice corrosion, plasma nitriding and surface nanocrystallization of titanium alloys[J]. Surface Technology, 2019, 48(11): 114-123. |