[1]刘向新, 周亚立, 何 磊, 等. 保护性耕作技术及其机具在新疆的推广应用[J]. 安徽农业科学, 2012, 40(3): 1741-1743. Liu Xiangxin, Zhou Yali, He Lei, et al. The popularization and application of conservation tillage technology and its machinery in Xinjiang[J]. Journal of Anhui Agricultural Sciences, 2012, 40(3): 1741-1743. [2]郝建军, 杨泽宇, 马璐萍, 等. Fe-Cr-C-V等离子堆焊层改善旋耕刀耐磨性和冲击韧性[J]. 农业工程学报, 2019, 35(3): 24-30. Hao Jianjun, Yang Zeyu, Ma Luping, et al. Fe-Cr-C-V plasma surfacing layer improving the wear resistance and impact toughness of rotary blade[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3): 24-30. [3]宋月鹏, 王 伟, 高东升, 等. 基于表面工程技术制备农机刃具的研究现状[J]. 中国农机化学报, 2018, 39(1): 27-31. Song Yuepeng, Wang Wei, Gao Dongsheng, et al. Research status of agricultural machinery cutting tools based on surface engineering technology[J]. Journal of Chinese Agricultural Mechanization, 2018, 39(1): 27-31. [4]何奖爱, 王玉伟, 材料磨损与耐磨材料[M]. 沈阳: 东北大学出版社, 2001. He Jiangai, Wang Yuwei. Wear and Wear Resistant Materials[M]. Shenyang: Northeast University Press, 2001. [5]杨 海. 田间触土部件磨损特性分析及耐磨技术试验研究[D]. 哈尔滨: 东北林业大学, 2019. Yang Hai. Analysis of wear characteristics of soil-engaging parts in the field and experimental study on wear resistance technology[D]. Harbin: Northeast Forestry University, 2019. [6]苏彬彬, 徐 杨, 简建明. 农业机械耐磨件发展及研究现状[J]. 热处理技术与装备, 2013, 34(5): 53-58. Su Binbin, Xu Yang, Jian Jianming. The development and research status of wear-resistant parts of agricultural machinery[J]. Heat Treatment Technology and Equipment, 2013, 34(5): 53-58. [7]吴志立, 赵建杰, 吴明亮, 等. 农机土壤工作部件耐磨强化研究进展[J]. 中国农机化学报, 2016, 37(8): 256-264. Wu Zhili, Zhao Jianjie, Wu Mingliang, et al. Research progress on wear resistance strengthening of soil working parts of agricultural machinery[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(8): 256-264. [8]Yazici A. Wear behavior of carbonitride-treated ploughshares produced from 30MnB5 steel for soil tillage applications[J]. Metal Science and Heat Treatment, 2011, 53: 248-253. [9]Jankauskas V, Antonov M, Varnauskas V, et al. Effect of WC grain size and content on low stress abrasive wear of manual arc welded hard facings with low-carbon or stainless steel matrix[J]. Wear, 2015, 328: 378-390. [10]Kang A S, Grewal J S, Jain D, et al. Wear behavior of thermal spray coatings on rotavator blades[J]. Journal of Thermal Spray Technology, 2012, 21: 355-359. [11]赵建国, 李建昌, 郝建军, 等. 氮弧熔敷TiCN/Fe金属陶瓷涂层对农业刀具耐磨性的影响[J]. 农业工程学报, 2013, 29(3): 84-89. Zhao Jianguo, Li Jianchang, Hao Jianjun, et al. Effect of TiCN/Fe cermet coating deposited by nitrogen arc on wear resistance of agricultural cutting tools[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(3): 84-89. [12]徐滨士, 谭 俊, 陈建敏. 表面工程领域科学技术发展[J]. 中国表面工程, 2011, 24(2): 1-12. Xu Binshi, Tan Jun, Chen Jianmin. Development of science and technology in the field of surface engineering[J]. China Surface Engineering, 2011, 24(2): 1-12. [13]Yilmaz O, Aksoy M, Yidirim S. Wear behaviour of Fe/M7C3 metal matrix composites with various microstructures during dry sliding[J]. Materials Science and Technology, 2003, 19(5): 661-668. [14]卢王张, 杨 莉, 张尧成, 等. 回火温度对等离子熔覆420不锈钢涂层显微组织和力学性能的影响[J]. 热加工工艺, 2023, 52(2): 129-132. Lu Wangzhang, Yang Li, Zhang Yaocheng, et al. Effects of tempering temperature on microstructure and mechanical properties of plasma cladding 420 stainless steel coatings[J]. Hot Working Technology, 2023, 52(2): 129-132. [15]朱红梅, 胡文锋, 李勇作, 等. 回火温度对马氏体不锈钢激光熔覆层组织和性能的影响[J]. 中国激光, 2019, 46(12): 62-69. Zhu Hongmei, Hu Wenfeng, Li Yongzuo, et al. Effect of tempering temperature on microstructure and properties of laser-cladded martensitic stainless steel layer[J]. Chinese Journal of Lasers, 2019, 46(12): 62-69. [16]彭思源. WC颗粒增强铁基复合堆焊层性能研究[D]. 合肥: 安徽建筑大学, 2015. Peng Siyuan. Study on the properties of WC particles reinforced iron-based composite surfacing layer[D]. Hefei: Anhui Jianzhu University, 2015. |