[1]Allen T R, Busby J T, Klueh R L, et al. Cladding and duct materials for advanced nuclear recycle reactors[J]. JOM, 2008, 60: 15-23. [2]Klueh R. Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors[J]. International Materials Reviews, 2005, 50(5): 287-310. [3]Bashu S A, Singh K, Rawat M S. Effect of heat treatment on mechanical properties and fracturebehaviour of a 12CrMoV steel[J]. Materials Science and Engineering A, 1990, 127(1): 7-15. [4]胡小强, 肖纳敏, 罗兴宏, 等. 含W型10%Cr超超临界钢中δ-铁素体的微观结构及其对力学性能的影响[J]. 金属学报, 2009, 45(5): 553-558. Hu Xiaoqiang, Xiao Namin, Luo Xinghong, et al. Effects of δ-ferrite on the microstructure and mechanical properties in a tungsten alloyed 10%Cr ultra-supercritical steel[J]. Acta Metallurgica Sinica, 2009, 45(5): 553-558. [5]包汉生, 谭舒平, 程世长, 等. 铜含量对T122耐热钢中δ铁素体含量及力学性能的影响[J]. 钢铁研究学报, 2010, 22(2): 28-33. Bao Hansheng, Tan Shuping, Cheng Shichang, et al. Effect of copper content on δ-ferrite content and mechanical properties of T122 heat-resistant steel[J]. Journal of Iron and Steel Research, 2010, 22(2): 28-33. [6]张建斌, 刘 帆, 薛 飞. 热处理工艺对P91耐热钢中δ-铁素体和冲击性能的影响[J]. 材料导报, 2018, 32(8): 1318-1322. Zhang Jianbin, Liu Fan, Xue Fei. Effects of heat treatment process on delta-ferrite and impact toughness of P91 heat-resistant steel[J]. Materials Reports, 2018, 32(8): 1318-1322. [7]张建斌, 刘 帆, 樊 丁, 等. δ-铁素体对P91耐热钢接头冲击性能的影响[J]. 材料热处理学报, 2017, 38(3): 108-113. Zhang Jianbin, Liu Fan, Fan Ding, et al. Influence of delta-ferrite content on impact toughness of P91 heat-resistant steel joint[J]. Transactions of Materials and Heat Treatment, 2017, 38(3): 108-113. [8]赵义瀚, 赵成志, 王健楠, 等. δ铁素体形成机制以及对马氏体耐热钢冲击功的影响[J]. 钢铁, 2013, 48(4): 70-75. Zhao Yihan, Zhao Chengzhi, Wang Jiannan, et al. Formation mechanism of δ-ferrite and its effect on martensite heat-resistant steel impact energy[J]. Iron and Steel, 2013, 48(4): 70-75. [9]Anderko K, Schäfer L, Materna-Morris E. Effect of the δ-ferrite phase on the impact properties of martensitic chromium steels[J]. Journal of Nuclear Materials, 1991, 179: 492-495. [10]Schäfer L. Influence of delta ferrite and dendritic carbides on the impact and tensile properties of a martensitic chromium steel[J]. Journal of Nuclear Materials, 1998, 258: 1336-1339. [11]刘正东, 程世长, 包汉生, 等. 高铬马氏体耐热钢中δ铁素体形成及影响因素[J]. 材料热处理学报, 2010, 31(11): 61-67. Liu Zhengdong, Cheng Shichang, Bao Hansheng, et al. Formation and influence factors of δ ferrite in high Cr and martensitic heat resistant steel[J]. Transactions of Materials and Heat Treatment, 2010, 31(11): 61-67. [12]刘军利, 林晓娉, 李 日, 等. 碳对马氏体钢显微组织和力学性能的影响[J]. 热加工工艺, 2006(12): 34-36. Liu Junli, Lin Xiaoping, Li Ri, et al. Influence of carbon on microstructure and mechanical property of low-carbon martensite steel[J]. Hot Working Technology, 2006(12): 34-36. [13]张文凤, 邹爱成, 刘运强, 等. 新型多尺度碳氮化物强化马氏体耐热钢的稳定性[J]. 材料导报, 2018, 32(20): 3606-3611, 3627. Zhang Wenfeng, Zou Aicheng, Liu Yunqiang, et al. A newly developed martensitic heat-resistant steel strengthened by multi-sized carbonitrides[J]. Materials Reports, 2018, 32(20): 3606-3611, 3627. [14]殷凤仕, 刘志良, 薛 冰, 等. 微量碳和氮对9%Cr耐热钢中第二相析出行为的影响[J]. 动力工程学报, 2010, 30(4): 258-262. Yin Fengshi, Liu Zhiliang, Xue Bing, et al. Effect of trace amounts of carbon and nitrogen on second phase precipitation of 9%Cr heat-resistant steels[J]. Journal of Chinese Society of Power Engineering, 2010, 30(4): 258-262. [15]Liu J K, Liu W B, Hao Z, et al. Effects of silicon content and tempering temperature on the microstructural evolution and mechanical properties of HT-9 steels[J]. Materials, 2020, 13(4): 972. |