[1]United States Environmental Protection Agency. Light-duty automotive technology, carbon dioxide emissions, and fuel economy trends: 1975 through 2016: EPA-420-S-16-001[R]. [2]Gryguc A, Behravesh S B, Shaha S K, et al. Low-cycle fatigue characterization and texture induced ratcheting behaviour of forged AZ80 Mg alloys[J]. International Journal of Fatigue, 2018, 116: 429-438. [3]Toscano D, Shaha S K, Behravesh B, et al. Effect of forging on the low cycle fatigue behavior of cast AZ31B alloy[J]. Materials Science and Engineering A, 2017, 706: 342-356. [4]Birbilis N, Williams G, Gusieva K, et al. Poisoning the corrosion of magnesium[J]. Electrochemistry Communication, 2013, 34: 295-298. [5]宋光铃. 镁合金腐蚀与防护[M]. 北京: 化学工业出版社, 2006: 45-180. [6]Wang J, Pang X, Jahed H. Surface protection of Mg alloys in automotive applications: A review[J]. AIMS Materials Science, 2019, 6(4): 567-600. [7]Jiang B L, Ge Y F. Micro-arc Oxidation (MAO) to Improve the Corrosion Resistance of Magnesium (Mg) Alloys[M]. Woodhead Publishing Limited, 2013: 163-196. [8]Guo H, An M, Xu S, et al. Microarc oxidation of corrosion resistant ceramic coating on a magneisum alloy[J]. Materials Letters, 2006, 60(12): 1538-1541. [9]韩恩厚, 宋 单. 一种实现镁合金表面微弧氧化膜原位封孔的溶液及制备微弧氧化膜的方法: CN104213175A[P]. 2014-12-17. [10]Song Y, Dong K, Shan D, et al. Investigation of a novel self-sealing pore micro-arc oxidation film on AM60 magnesium alloy[J]. Journal of Magnesium and Alloys, 2013, 1(1): 82-87. [11]Xue Y N, Pang X, Jiang B L, et al. Corrosion and corrosion fatigue performances of micro-arc oxidation coating on AZ31B cast magnesium alloy[J]. Materials and Corrosion, 2019, 70(2): 268-280. [12]Ezhilselvi V, Nithin J, Balaraju J N, et al. The influence of current density on the morphology and corrosion properties of MAO coatings on AZ31B magnesium alloy[J]. Surface and Coatings Technology, 2016, 288: 221-229. [13]Duan H, Yan C, Wang F. Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D[J]. Electrochimica Acta, 2007, 52: 3785-3793. [14]Gnedenkov S V, Khrisanfova O A, Zavidnaya A G, et al. Composition and adhesion of protective coatings on aluminum[J]. Surface and Coatings Technology, 2001, 145: 146-151. [15]Xue Y N, Pang X, Jiang B L, et al. Characterization of the corrosion performances of as-cast Mg-Al and Mg-Zn magnesium alloys with micrarc oxidation coatings[J]. Materials and Corrosion, 2020, 71(6): 992-1006. [16]Song G L, Atrens A. Corrosion mechanisms of magnesium alloys[J]. Advanced Engineering Materials, 2000, 1: 11-31. [17]Ben Haroush M, Ben Hamu G, Eliezer D, et al. The relation between microstructure and corrosion behavior of AZ80 Mg alloy following different extrusion temperatures[J]. Corrosion Science, 2008, 50: 1766-1778. [18]Luo S, Fu A, Liu M, et al. Stress corrosion cracking behavior and mechanism of super 13Cr stainless steel in simulated O2/CO2 containing 3.5wt%NaCl solution[J]. Engineering Failure Analysis, 2021, 130: 105748. [19]Luo S, Liu M, Shen Y, et al. Sulfide stress corrosion cracking behavior of G105 and S135 high-strength drill pipe steels in H2S environment[J]. Journal of Materials Engineering and Performance, 2019, 28(3): 1707-1718. [20]Liu Q, Zhou Q, Venezuela J, et al. Hydrogen influence on some advanced high-strength steels[J]. Corrosion Science, 2017, 125: 114-138. [21]Merson E, Poluyanov V, Myagkikh P, et al. Effect of strain rate and corrosion products on pre-exposure stress corrosion cracking in the ZK60 magnesium alloy[J]. Materials Science & Engineering A, 2022, 830: 142304. [22]Nachtsheim J, Ma S, Burja J, et al. In vitro evaluation of stress corrosion cracking susceptibility of PEO-coated rare-earth magnesium alloy WE4 [J]. Surface and Coatings Technology, 2024: 130391. [23]Fujii T, Ito D, Shimamura Y, et al. Growth characteristics of stress corrosion cracking in high-strength 7075 aluminum alloy in sodium chloride solutions [J]. Engineering Fracture Mechanics, 2023, 292: 109657. |