[1]Dga B, Lcma B, Ao A, et al. The role of plasticity and hydrogen flux in the fracture of a tempered martensitic steel: A new design of mechanical test until fracture to separate the influence of mobile from deeply trapped hydrogen[J]. Acta Materialia, 2020, 186: 133-148. [2]王金荣, 许 强, 逯志强, 等. 980 MPa级汽车用钢氢致延迟断裂性能[J]. 电镀与精饰, 2021, 43(1): 41-46. Wang Jinrong, Xu Qiang, Lu Zhiqiang, et al. Hydrogen induced delayed fracture of 980 MPa grade automotive steel[J]. Plating and Finishing, 2021, 43(1): 41-46. [3]Venezuela J, Liu Q L, Zhang M X, et al. A review of hydrogen embrittlement of martensitic advanced high-strength steels[J]. Corrosion Reviews, 2016, 34(3): 153-186. [4]Fuchigami H, Minami§H, Nagumo || M, et al. Effect of grain size on the susceptibility of martensitic steel to hydrogen-related failure[J]. Philosophical Magazine Letters, 2006, 86(1): 21-29. [5]Depover T, Verbeken K. The detrimental effect of hydrogen at dislocations on the hydrogen embrittlement susceptibility of Fe-C-X alloys[J]. International Journal of Hydrogen Energy, 2018, 43(5): 3050-3061. [6]李金许, 王 伟, 周 耀, 等. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 66-80. Li Jinxu, Wang Wei, Zhou Yao, et al. A review of research status of hydrogen embrittlement for automotive advanced high-strength steels[J]. Acta Metallurgica Sinica, 2020, 56(4): 66-80. [7]Zhang S Q, Wan J F, Zhao Q Y, et al. Dual role of nanosized NbC precipitates in hydrogen embrittlement susceptibility of lath martensitic steel[J]. Corrosion Science, 2020, 164: 108345. [8]Jo M C, Yoo J S, Kim S, et al. Effects of Nb and Mo alloying on resistance to hydrogen embrittlement in 1.9 GPa-grade hot-stamping steels[J]. Materials Science and Engineering A, 2020, 789: 1-11. [9]Wei F G, Tsuzaki K. Quantitative analysis on hydrogen trapping of TiC particles in steel[J]. Metallurgical and Materials Transactions A, 2006, 37(2): 331-353. [10]Nagao A, Martin M L, Dadfarnia M, et al. The effect of nano-sized (Ti, Mo)C precipitates on hydrogen embrittlement of tempered lath martensitic steel[J]. Acta Materialia, 2014, 74: 244-254. [11]Hokazono K, Kawamori M, Matsumoto Y, et al. Comparison of hydrogen behavior trapped at precipitated and undissolved vanadium carbide in vanadium-bearing high strength steels[C]//Iop Conference Series: Materials Science and Engineering, 2018, 461: 1-5. [12]Wei F G, Hara T, Tsuzaki K. Nano-precipitates design with hydrogen trapping character in high strength steel[J]. Advanced steels, 2011, 13: 87-92. [13]Jin S P, Seong H G, Hwang J, et al. Adverse effects of Ni on the mechanical and corrosion-induced hydrogen embrittlement properties of ultra-strong giga steel used for automotive applications[J]. Materials and Design, 2020, 193: 108877. [14]Lin Y C, D Chen, Chiang M H, et al. Response of hydrogen desorption and hydrogen embrittlement to precipitation of nanometer-sized copper in tempered martensitic low-carbon steel[J]. Metals and Materials Society, 2019, 71: 1349-1356. [15]Shi X, Wei Y, Wei W, et al. Novel Cu-bearing high-strength pipeline steels with excellent resistance to hydrogen-induced cracking[J]. Materials and Design, 2016, 92: 300-305. [16]Lin Y C, Mccarroll I E, Lin Y T, et al. Hydrogen trapping and desorption of dual precipitates in tempered low-carbon martensitic steel[J]. Acta Materialia, 2020, 196: 516-527. [17]姜岳峰. 微观结构对高强钢氢脆敏感性的影响及机理[D]. 合肥: 中国科学技术大学, 2019. Jiang Yuefeng. Effects of microstructures on hydrogen embrittlement susceptibility and mechanism for high strength steels[D]. Hefei: University of Science and Technology of China, 2019. [18]Li S J, Akiyama E, Yuuji K, et al. Hydrogen embrittlement property of a 1700-MPa-class ultrahigh-strength tempered martensitic steel[J]. Science and Technology of Advanced Materials, 2010, 11(2): 25005. [19]Chen Y S, Lu H, Liang J, et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates[J]. Science, 2020, 367: 171-175. [20]Deng Q, Zhao W, Jiang W, et al. Hydrogen embrittlement susceptibility and safety control of reheated CGHAZ in X80 welded pipeline[J]. Journal of Materials Engineering and Performance, 2018, 27: 1654-1663. [21]Hojo T, Kobayashi J, Sugimoto K I, et al. Effects of alloying elements addition on delayed fracture properties of ultra high-strength TRIP-aided martensitic steels[J]. Metals-Open Access Metallurgy Journal, 2019, 10(1): 1-13. [22]Luo H, Wang X, Liu Z, et al. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel[J]. Materials Science and Technology, 2020, 47(16): 7-23. [23]Momotani Y, Shibata A, Yonemura T, et al. Effect of initial dislocation density on hydrogen accumulation behavior in martensitic steel[J]. Scripta Materialia, 2020, 178: 318-323. [24]Sugimoto K I, Murata M, Song S M. Formability of Al-Nb bearing ultra high-strength TRIP-aided sheet steels with bainitic ferrite and/or martensite matrix[J]. ISIJ International, 2010, 50: 162-168. [25]Pham D V, Kobayashi J, Sugimoto K I. Effects of microalloying on stretch-flangeability of TRIP-aided martensitic sheet steel[J]. Journal of the Iron and Steel Institute of Japan, 2013, 99(11): 659-668. [26]Kobayashi J, Tonegawa H, Sugimoto K I. Cold formability of 22SiMnCrB TRIP-aided martensitic sheet steel[J]. Procedia Engineering, 2014, 81: 1336-1341. [27]Momotani Y, Shibata A, Yonemura T, et al. Effect of initial dislocation density on hydrogen accumulation behavior in martensitic steel[J]. Scripta Materialia, 2020, 178: 318-323. [28]Nagao A, Smith C D, Dadfarnia M, et al. The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel[J]. Acta Materialia, 2012, 60(13/14): 5182-5189. [29]Zamanzade M, Mueller C, Velayarce J R, et al. Susceptibility of different crystal orientations and grain boundaries of polycrystalline Ni to hydrogen blister formation[J]. International Journal of Hydrogen Energy, 2019, 44(14): 7706-7714. [30]Kimizuka H, Ogata S. Slow diffusion of hydrogen at a screw dislocation core in α-iron[J]. Physical Review B, 2011, 84(2): 024116. |