[1]Chen S, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels[J]. Progress in Materials Science, 2017, 89: 345-391. [2]Gutierrez-Urrutia I, Raabe D. Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels[J]. Scripta Materialia, 2013, 68(6): 343-347. [3]Li Z, Wang Y C, Cheng X, et al. Microstructure and mechanical properties of an Fe-Mn-Al-C lightweight steel after dynamic plastic deformation processing and subsequent aging[J]. Materials Science and Engineering A, 2022, 833: 142566. [4]Ren P, Chen X P, Yang M J, et al. Effect of early stage of κ-carbides precipitation on tensile properties and deformation mechanism in high Mn-Al-C austenitic low-density steel[J]. Materials Science and Engineering A, 2022, 857: 144132. [5]Lin C L, Chao C G, Bor H Y, et al. Relationship between microstructures and tensile properties of an Fe-30Mn-8.5Al-2.0C alloy[J]. Materials Transactions, 2010, 51(6): 1084-1088. [6]Lin C L, Chao C G, Juang J Y, et al. Deformation mechanisms in ultrahigh-strength and high-ductility nanostructured FeMnAlC alloy[J]. Journal of Alloys and Compounds, 2014, 586: 616-620. [7]Liu D, Cai M, Ding H, et al. Control of inter/intra-granular κ-carbides and its influence on overall mechanical properties of a Fe-11Mn-10Al-1.25C low density steel[J]. Materials Science and Engineering A, 2018, 715: 25-32. [8]Kim S H, Kim H, Kim N J. Brittle intermetallic compound makesultrastrong low-density steel with large ductility[J]. Nature, 2015, 518: 77. [9]Hwang J H, Trang T T T, Lee O, et al. Improvement of strength-ductility balance of B2-strengthened lightweight steel[J]. Acta Materialia, 2020, 191: 1-12. [10]Zargaran A, Trang T T T, Park G, et al. κ-Carbide assisted nucleation of B2: A novel pathway to develop high specific strength steels[J]. Acta Materialia, 2021, 220: 117349. [11]Zhang J L, Raabe D, Tasan C C. Designing duplex, ultrafine-grained Fe-Mn-Al-C steels by tuning phase transformation and recrystallization kinetics[J]. Acta Materialia, 2017, 141: 374-387. [12]Ren P, Chen X P, Cao Z X, et al. Synergistic strengthening effect induced ultrahigh yield strength in lightweight Fe30Mn11Al-1.2C steel[J]. Materials Science and Engineering A, 2019, 752: 160-166. [13]An Y F, Chen X P, Ren P, et al. Ultrastrong and ductile austenitic lightweight steel via ultra-fine grains and heterogeneous B2 precipitates[J]. Materials Science and Engineering A, 2022, 860: 144330. [14]Mohamadizadeh A, Zarei-Hanzaki A, Kisko A, et al. Ultra-fine grained structure formation through deformation-induced ferrite formation in duplex low-density steel[J]. Materials and Design, 2016, 92: 322-329. [15]Gao J, Jiang S, Zhao H, et al. Enhancing strength and ductility in a near medium Mn austenitic steel via multiple deformation mechanisms through nanoprecipitation[J]. Acta Materialia, 2023, 243: 118538. [16]杨富强, 宋仁伯, 李亚萍, 等. 退火温度对冷轧Fe-Mn-Al-C低密度钢性能的影响[J]. 材料研究学报, 2015, 29(2): 108-114. Yang Fuqiang, Song Renbo, Li Yaping, et al. Effect of annealing temperature on properties of cold-rolled Fe-Mn-Al-C low density steel[J]. Chinese Journal of Materials Research, 2015, 29(2): 108-114. [17]Putyatin A A, Davydov V E, Nesterenko S N. High temperature interactions in the Fe-Al-C system at 6 GPa pressure[J]. Journal of Alloys and Compounds, 1992, 179(1-2): 165-175. [18]Kohlhaas R, Dunner P, Schmitzp N. Über die Temperaturabhängigkeit der Gitterparameter von Eisen Kobalt und Nickel im Bereich hoher Temperaturen[J]. Zeitschrift fur Angewandte Physik, 1967, 23(4): 245. [19]Owen E A, Williams G I. A low-temperature X-ray camera[J]. Journal of Scientific Instruments, 1954, 31(2): 49. [20]Zambrano O A. A general perspective of Fe-Mn-Al-C steels[J]. Journal of Materials Science, 2018, 53(20): 14003-14062. [21]Bentley A P. Ordering in Fe-Mn-Al-C austenite[J]. Journal of Materials Science Letters, 1986, 5(9): 907-908. [22]Zhi H, Li J, Li W, et al. Simultaneously enhancing strength-ductility synergy and strain hardenability via Si-alloying in medium-Al FeMnAlC lightweight steels[J]. Acta Materialia, 2023, 245: 118611. [23]Li Y, Lu Y, Li W, et al. Hierarchical microstructuredesign of a bimodal grained twinning-induced plasticity steel with excellent cryogenic mechanical properties[J]. Acta Materialia, 2018, 158: 79-94. [24]Etienne A, Massardier-Jourdan V, Cazottes S, et al. Ferrite effects in Fe-Mn-Al-C triplex steels[J]. Metallurgical and Materials Transactions A, 2014, 45(1): 324-334. [25]Haase C, Zehnder C, Ingendahl T, et al. On the deformation behavior of κ-carbide-free and κ-carbide-containing high-Mn light-weight steel[J]. Acta Materialia, 2017, 122: 332-343. [26]LiC N, Ji F Q, Yuan G, et al. The impact of thermo-mechanical controlled processing on structure-property relationship and strain hardening behavior in dual-phase steels[J]. Materials Science and Engineering A, 2016, 662: 100-110. [27]Ji F, Song W, Ma Y, et al. Recrystallization behavior in a low-density high-Mn high-Al austenitic steel undergone thin strip casting process[J]. Materials Science and Engineering A, 2018, 733: 87-97. [28]Welsch E, Ponge D, Haghighat S M H, et al. Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel[J]. Acta Materialia, 2016, 116: 188-199. [29]Haghdadi N, Cizek P, Hodgson P D, et al. Microstructure dependence of impact toughness in duplex stainless steels[J]. Materials Science and Engineering A, 2019, 745: 369-378. [30]Wang H, Cao Z, Gao Z, et al. Synergetic strengthening from dynamic slip band-grain boundary interaction in a low-density FeMnAlC steel[J]. Materials Science and Engineering A, 2022, 862: 144498. [31]Feng Y, Song R, Pei Z, et al. Effect of aging isothermal time on the microstructure and room-temperature impact toughness of Fe-24.8Mn-7.3Al-1.2C austenitic steel with κ-carbides precipitation[J]. Metals and Materials International, 2018, 24(5): 1012-1023. [32]Albuquerque de Vicente A, D'silva P A, Jos B, et al. Study on the effect of ferrite number on impact toughness of austenitic stainless steels at low temperatures[J]. International Journal of Advanced Engineering Research and Science, 2020, 7(10): 102-111. [33]Zheng Z, Yang H, Shatrava A P, et al. Work hardening behavior and fracture mechanisms of Fe-18Mn-1.3C-2Cr low-density steel castings with varying proportions of aluminum alloying[J]. Materials Science and Engineering A, 2022, 862: 144467. [34]Xie Z, Hui W, Bai S, et al. Impact toughness of Fe-Mn-Al-C austenitic low-density steel solution treated at different temperatures[J]. Journal of Materials Science, 2023, 58(1): 1-21. [35]Guo F J, Wang Y F, Wang M S, et al. The critical grain size for optimal strength-ductility synergy in CrCoNi medium entropy alloy[J]. Scripta Materialia, 2022, 218: 114808. [36]Zhang S, Liu Y, Wang J, et al. Tensile behaviors and strain hardening mechanisms in a high-Mn steel with heterogeneous microstructure[J]. Materials, 2022, 15(10): 3542. [37]MaL, Tang Z, You Z, et al. Microstructure, mechanical properties and deformation behavior of Fe-28.7Mn-10.2Al-1.06C high specific strength steel[J]. Metals, 2022, 12(4): 602. [38]刘日平, 王青峰, 张新宇, 等. 一种低密度高塑韧性钢及其制备方法和应用: CN202210436540.9[P]. 2023-05-23. [39]黄 军, 白 云, 李经涛, 等. 一种低密度高强高韧热轧钢板的制造方法: CN202210121883.6[P]. 2022-06-24. [40]刘日平, 王青峰, 张新宇. 一种低密度超高强度高塑性钢及其制备方法和应用: CN202210436216.7[P]. 2022-07-16. [41]You R K, Kao P W, Gan D. Mechanical properties of Fe-30Mn-10Al-1C-1Si alloy[J]. Materials Science and Engineering A, 1989, 117: 141-148. [42]Zhang L, Song R, Zhao C, et al. Evolution of the microstructure and mechanical properties of an austenite-ferrite Fe-Mn-Al-C steel[J]. Materials Science and Engineering A, 2015, 643: 183-193. [43]Luo K T, Kao P W, Gan D. Low temperature mechanical properties of Fe-28Mn-5Al-1C alloy[J]. Materials Science and Engineering A, 1992, 151(1): 15-18. |