[1]张曼曼, 朱 凯, 张文学, 等. 铸态2219铝合金热压缩变形组织演变规律[J]. 锻压技术, 2021, 46(1): 191-196. Zhang Manman, Zhu Kai, Zhang Wenxue, et al. Microstructure evolution law of as-cast 2219 aluminum alloy in hot compression deformation[J]. Forging and Stamping Technology, 2021, 46(1): 191-196. [2]曾周亮, 宁康琪, 彭北山. 高强铝合金第二相强化及其机理[J]. 冶金丛刊, 2008(4): 5-7. Zeng Zhouliang, Ning Kangqi, Peng Beishan. Mechanism and second phase strengthening of high strength aluminum alloy[J]. Metallurgical Collections, 2008(4): 5-7. [3]黄元春, 杨楚戈, 刘 宇, 等. 2219铝合金铸锭均匀化热处理工艺[J]. 金属热处理, 2016, 41(12): 92-97. Huang Yuanchun, Yang Chuge, Liu Yu, et al. Homogenization heat treatment of 2219 aluminum alloy ingots[J]. Heat Treatment of Metals, 2016, 41(12): 92-97. [4]王喜琴, 张贵一, 乐 斌, 等. 固溶处理工艺对2219铝合金力学性能的影响[J]. 上海航天, 2019, 36(5): 133-138. Wang Xiqin, Zhang Guiyi, Le Bin, et al. Effects of solution treatment on mechanical properties of 2219 aluminum alloy[J]. Aerospace Shanghai, 2019, 36(5): 133-138. [5]阳代军, 徐坤和, 丁鹏飞, 等. 2219铝合金大直径圆锭铸造性能分析及其改进措施[J]. 航天制造技术, 2014(6): 1-5. Yang Daijun, Xu Kunhe, Ding Pengfei, et al. Analysis and improvement measures on casting property of 2219 aluminium alloy large diameter round ingot[J]. Aerospace Manufacturing Technology, 2014(6): 1-5. [6]邹 杰, 彭文飞, 陈镇扬. 大型环形件用2219铝合金的动态再结晶行为[J]. 机械工程材料, 2021, 45(8): 37-44. Zou Jie, Peng Wenfei, Chen Zhenyang. Dynamic recrystallization behavior of 2219 aluminum alloy for large-scale rings[J]. Materials for Mechanical Engineering, 2021, 45(8): 37-44. [7]孙明月, 徐 斌, 谢碧君, 等. 大锻件均质化构筑成形研究进展[J]. 科学通报, 2020, 65(27): 3043-3058. Sun Mingyue, Xu Bin, Xie Bijun, et al. Research advances on homogenization manufacturing of heavy components by metal additive forging[J]. Chinese Science Bulletin, 2020, 65(27): 3043-3058. [8]Venugopal S, Mahendran G. Effect of operation parameters on diffusion bonded AA5083, AA6082 and AA7075 aluminum alloys[J]. Transactions of the Indian Institute of Metals, 2018, 71(9): 2185-2198. [9]Xie B J, Sun M Y, Xu B, et al. Oxidation of stainless steel in vacuum and evolution of surface oxide scales during hot-compression bonding[J]. Corrosion Science, 2018, 147: 41-52. [10]Xie B J, Sun M Y, Xu B, et al. Evolution of interfacial characteristics and mechanical properties for 316LN stainless steel joints manufactured by hot-compression bonding[J]. Journal of Materials Processing Technology, 2020, 283: 116733. [11]Xie B J, Sun M Y, Xu B, et al. Dissolution and evolution of interfacial oxides improving the mechanical properties of solid state bonding joints[J]. Materials and Design, 2018, 157(5): 437-446. [12]江海洋, 孙明月, 吴铭方, 等. 7075铝合金热变形连接接头的组织与性能[J]. 金属热处理, 2020, 45(2): 46-50. Jiang Haiyang, Sun Mingyue, Wu Mingfang, et al. Microstructure and properties of 7075 aluminum alloy hot compress bonding joint[J]. Heat Treatment of Metals, 2020, 45(2): 46-50. [13]李京龙, 熊江涛, 张赋升. 真空扩散焊热循环对2A14铝合金接头界面演变的影响[J]. 焊接学报, 2007, 28(3): 41-44, 115. Li Jinglong, Xiong Jiangtao, Zhang Fusheng. Effect of thermal cycle on interface evolution of vacuum diffusion bonded aluminum alloy 2A14[J]. Transactions of the China Welding Institution, 2007, 28(3): 41-44, 115. [14]刘 宇, 杨鑫鑫, 郝 瑞. 扩散焊工艺对6063铝合金焊接接头性能的影响[J]. 焊接, 2019(7): 31-33, 39. Liu Yu, Yang Xinxin, Hao Rui. Effect of diffusion welding technology on the properties of 6063 aluminum alloy welded joints[J]. Welding and Joining, 2019(7): 31-33, 39. [15]熊江涛, 张赋升, 李京龙. 减小表面氧化膜对LD2扩散焊接头不利影响的工艺[J]. 焊接, 2004(6): 22-24. Xiong Jiangtao, Zhang Fusheng, Li Jinglong. Procedure reducing disadvantage effect of surface oxide on LD2 aluminum alloy diffusion welded joint[J]. Welding and Joining, 2004(6): 22-24. [16]程 喆, 钱东升, 邓加东. 2219铝合金构筑成形工艺试验与界面愈合规律[J]. 锻压技术, 2020, 45(12): 171-177. Cheng Zhe, Qian Dongsheng, Deng Jiadong. Additive forming process experiment and interface healing law for 2219 aluminum alloy[J]. Forging and Stamping Technology, 2020, 45(12): 171-177. [17]Xu D Z, Meng L G, Zhang C R, et al. Interface microstructure evolution and bonding mechanism during vacuum hot pressing bonding of 2A12 aluminum alloy[J]. Materials Characterization, 2022, 189: 111997. [18]张长日, 孟令刚, 徐大召, 等. 温度对2A12铝合金扩散连接中的界面愈合与性能影响[J]. 特种铸造及有色合金, 2022, 42(7): 875-880. Zhang Changri, Meng Linggang, Xu Dazhao, et al. Effects of temperature on interfacial healing and properties of 2A12 aluminum alloy diffusion bonding[J]. Special Casting and Nonferrous Alloys, 2022, 42(7): 875-880. [19]Xue K M, Tian W C, Yan S L, et al. Variations in mechanical properties of RAFM steel under vacuum diffusion welding with pre-deformation and subsequent heat treatment[J]. Fusion Engineering and Design, 2020, 152: 111470. [20]Huang Y, Ridley N, Humphreys F J, et al. Diffusion bonding of superplastic 7075 aluminium alloy[J]. Materials Science and Engineering A, 1999, 266(1): 295-302. [21]Zhang C, Li H, Li M Q, et al. Detailed evolution mechanism of interfacial void morphology in diffusion bonding[J]. Journal of Materials Science and Technology, 2016, 32(3): 259-264. [22]娜日松, 黄明辉. 改性铝合金的扩散连接机理[J]. 机械工程材料, 2002, 26(11): 27-29. Na Risong, Huang Minghui. Diffusion bonding of modified aluminum alloy LY11[J]. Materials for Mechanical Engineering, 2002, 26(11): 27-29. [23]牛济泰, 王慕珍, 刘黎明, 等. 扩散焊条件下Al2O3p/6061Al复合材料中氧化膜的行为[J]. 材料研究学报, 2000, 14(3): 244-248. Niu Jitai, Wang Muzhen, Liu Liming, et al. Behavior of oxide film in diffusion welding of aluminium matrix composites Al2O3p/6061Al[J]. Chinese Journal of Materials Research, 2000, 14(3): 244-248. [24]邢 军, 陈康华, 陈送义, 等. Cu含量对2219铝合金锻件及其焊接接头组织与性能的影响[J]. 航空材料学报, 2017, 37(3): 1-8. Xing Jun, Chen Kanghua, Chen Songyi, et al. Effect of Cu content on microstructure and properties of 2219 aluminum alloy forgings and its welded joints[J]. Journal of Aeronautical Materials, 2017, 37(3): 1-8. [25]吴长俊, 易幼平, 何海林. 变形温度对2219铝合金组织和力学性能的影响[J]. 热加工工艺, 2017, 46(19): 19-23. Wu Changjun, Yi Youping, He Hailin. Effects of deformation temperature on microstructure and mechanical properties of 2219 aluminum alloy[J]. Hot Working Technology, 2017, 46(19): 19-23. |