[1]Liu M, Hu H, Kern M, et al. Effect of integrated austempering and Q&P treatment on the transformation kinetics, microstructure and mechanical properties of a medium-carbon steel[J]. Materials Science and Engineering A, 2023, 869: 144780. [2]Rementeria R, Morales-Rivas L, Kuntz M, et al. On the role of microstructure in governing the fatigue behaviour of nanostructured bainitic steels[J]. Materials Science and Engineering A, 2015, 630: 71-77. [3]Caballero F G, Santofimia M J, García-Mateo C, et al. Theoretical design and advanced microstructure in super high strength steels[J]. Materials & Design, 2009, 30(6): 2077-2083. [4]Li Z D, Zhou S T, Yang C F, et al. High/very high cycle fatigue behaviors of medium carbon pearlitic wheel steels and the effects of microstructure and non-metallic inclusions[J]. Materials Science and Engineering A, 2019, 764: 138208. [5]Li T, Zhong Y, Qu S, et al. Influences of the characteristics of carbide particles on the rolling contact fatigue life of rare earth modified, highly clean bearing steel[J]. Engineering Failure Analysis, 2023, 143: 106888. [6]Gao B, Tan Z, Liu Z, et al. Influence of non-uniform microstructure on rolling contact fatigue behavior of high-speed wheel steels[J]. Engineering Failure Analysis, 2019, 100: 485-491. [7]Yang C, Liu P, Luan Y, et al. Study on transverse-longitudinal fatigue properties and their effective-inclusion-size mechanism of hot rolled bearing steel with rare earth addition[J]. International Journal of Fatigue, 2019, 128: 105193. [8]Pashangeh S, Somani M, Banadkouki S S G. Microstructural evolution in a high-silicon medium carbon steel following quenching and isothermal holding above and below the Ms temperature[J]. Journal of Materials Research and Technology, 2020, 9(3): 3438-3446. [9]Li X, Shi L, Liu Y, et al. Achieving a desirable combination of mechanical properties in HSLA steel through step quenching[J]. Materials Science and Engineering A, 2020, 772: 138683. [10]张博涵, 李浩楠, 高鹏冲, 等. 分级淬火对高铬铸铁轧辊组织的影响[J]. 金属热处理, 2022, 47(7): 15-20. Zhang Bohan, Li Haonan, Gao Pengchong, et al. Effect of step quenching process on microstructure of high-Cr cast iron roll[J]. Heat Treatment of Metals, 2022, 47(7): 15-20. [11]Cong T, Qian G, Zhang G, et al. Effects of inclusion size and stress ratio on the very-high-cycle fatigue behavior of pearlitic steel[J]. International Journal of Fatigue, 2021, 142: 105958. [12]Li C, Dai W, Liu Y, et al. Effect of cooling condition on fatigue behavior of the forged EA4T steel[J]. Steel Research International, 2020, 91(9): 2000167. [13]Hu Y, Guo L C, Maiorino M, et al. Comparison of wear and rolling contact fatigue behaviours of bainitic and pearlitic rails under various rolling-sliding conditions[J]. Wear, 2020, 460-461: 203455. [14]Wang J, Qu S, Lai F, et al. Synergistic effects of a combined surface modification technology on rolling contact fatigue behaviors of 20CrMoH steel under different contact stresses[J]. International Journal of Fatigue, 2021, 153: 106487. [15]Atreya V, Bos C, Santofimia M J. Understanding ferrite deformation caused by austenite to martensite transformation in dual phase steels[J]. Scripta Materialia, 2021, 202: 114032. [16]Shewmon P. The thermal diffusion of carbon in α and γ iron[J]. Acta Metallurgica, 1960, 8(9): 605-611. [17]龙晓燕. 中碳无碳化物贝氏体钢组织和性能研究[D]. 秦皇岛: 燕山大学, 2018. [18]Zhou Q, Qian L, Meng J, et al. Low-cycle fatigue behavior and microstructural evolution in a low-carbon carbide-free bainitic steel[J]. Materials & Design, 2015, 85: 487-496. |