[1]康永林. 汽车轻量化先进高强钢与节能减排[J]. 钢铁, 2008, 43(6): 1-7. Kang Yonglin. Lightweight vehicle, advanced high strength steel and energy-saving and emission reduction[J]. Iron and Steel, 2008, 43(6): 1-7. [2]Yu L X, Gu X G, Qian L J, et al. Application of tailor rolled blanks in optimum design of pure electric vehicle crashworthiness and lightweight[J]. Thin-Walled Structures, 2021, 161(7): 107410. [3]王存宇, 常 颖, 周峰峦, 等. 高强度高塑性第三代汽车钢的M3组织调控理论与技术[J]. 金属学报, 2020, 56(4): 400-410. Wang Cunyu, Chang Ying, Zhou Fengluan, et al. M3 microstructure control theory and technology of the third-generation automotive steels with high strength and high ductility[J]. Acta Metallurgica Sinica, 2020, 56(4): 400-410. [4]徐娟萍, 付 豪, 王 正, 等. 中锰钢的研究进展与前景[J]. 工程科学学报, 2019, 41(5): 557-572. Xu Juanping, Fu Hao, Wang Zheng, et al. Research progress and prospect of medium manganese steel[J]. Chinese Journal of Engineering, 2019, 41(5): 557-572. [5]宋丽娜, 兰 鹏, 刘春秀, 等. 第3代汽车用中锰钢的研究现状[J]. 钢铁研究学报, 2015, 27(7): 1-8. Song Lina, Lan Peng, Liu Chunxiu, et al. Research situation of medium manganese steel for 3rd generation automobile sheet[J]. Journal of Iron and Steel Research, 2015, 27(7): 1-8. [6]赵征志, 陈伟健, 高鹏飞, 等. 先进高强度汽车用钢研究进展及展望[J]. 钢铁研究学报, 2020, 32(12): 1059-1076. Zhao Zhengzhi, Chen Weijian, Gao Pengfei, et al. Progress and perspective of advanced high strength automotive steel[J]. Journal of Iron and Steel Research, 2020, 32(12): 1059-1076. [7]Liu G, Li B, Xu S, et al. Effect of intercritical annealing temperature on multiphase microstructure evolution in ultra-low carbon medium manganese steel[J]. Materials Characterization, 2021, 173(5): 110920. [8]Hu Bin, Luo Haiwen. A novel two-step intercritical annealing process to improve mechanical properties of medium Mn steel[J]. Acta Materialia, 2019, 176: 250-263. [9]Yang D P, Wu D, Yi H L. Reverse transformation from martensite into austenite in a medium-Mn steel[J]. Scripta Materialia, 2019, 161: 1-5. [10]Yang Y G, Mi Z L, Xu M, et al. Impact of intercritical annealing temperature and strain state on mechanical stability of retained austenite in medium Mn steel[J]. Materials Science and Engineering A, 2018, 725: 389-397. [11]杨德振, 熊志平, 张 超, 等. 回火时间对Fe-0.39C-3.69Mn中锰钢的组织和力学性能的影响[J]. 钢铁研究学报, 2021, 33(11): 1161-1170. Yang Dezhen, Xiong Zhiping, Zhang Chao, et al. Effect of tempering time on microstructures and mechanical properties of an Fe-0.39C-3.69Mn medium Mn steel[J]. Journal of Iron and Steel Research, 2021, 33(11): 1161-1170. [12]De Amar K, Murdock D C, Mataya M C, et al. Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction[J]. Scripta Materialia, 2004, 50(12): 1445-1449. [13]Zou Y, Xu Y B, Hu Z P, et al. Austenite stability and its effect on the toughness of a high strength ultra-low carbon medium manganese steel plate[J]. Materials Science and Engineering A, 2016, 675: 153-163. [14]Su G Q, Gao X H, Yan T, et al. Intercritical tempering enables nanoscale austenite/ε-martensite formation in low-C medium-Mn steel: A pathway to control mechanical properties[J]. Materials Science and Engineering A, 2018, 736: 417-430. [15]Lai Q Q, Gouné M, Perlade A, et al. Mechanism of austenite formation from spheroidized microstructure in an intermediate Fe-0.1C-3.5Mn Steel[J]. Metallurgical and Materials Transactions A, 2016, 47(7): 3375-3386. [16]Cai Z H, Ding H, Misra R D K, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content[J]. Acta Materialia, 2015, 84: 229-236. [17]刘春泉, 彭其春, 薛正良, 等. 不同热处理工艺对Nb-Mo中锰钢组织和力学性能的影响[J]. 钢铁研究学报, 2019, 31(12): 1100-1107. Liu Chunquan, Peng Qichun, Xue Zhengliang, et al. Effect of different heat treatment processes on microstructure and mechanical properties of Nb-Mo microalloyed medium-Mn steel[J]. Journal of Iron and Steel Research, 2019, 31(12): 1100-1107. [18]齐祥羽, 严 玲, 李广龙, 等. 逆转变奥氏体稳定性对中锰钢强韧性的影响[J]. 金属热处理, 2021, 46(9): 205-210. Qi Xiangyu, Yan Ling, Li Guanglong, et al. Effect of reversed austenite stability on strength and toughness of medium-Mn steel[J]. Heat Treatment of Metals, 2021, 46(9): 205-210. [19]刘 岗, 孙新军, 梁小凯. 两相区回火温度对含7%锰Q690钢组织和性能的影响[J]. 金属热处理, 2021, 46(1): 55-60. Liu Gang, Sun Xinjun, Liang Xiaokai. Effect of intercritical tempering temperature on microstructure and mechanical properties of Q690 steel with 7%Mn[J]. Heat Treatment of Metals, 2021, 46(1): 55-60. |