[1]Verhoeven J D, Pendray A H, Clark H F. Wear tests of steel knife blades[J]. Wear, 2008, 265(7/8): 1093-1099. [2]Zhang J, Li J, Shi C B, et al. Evolution of carbides and performance of knives made of aged 8Cr13MoV steel[J]. Materials Science and Technology, 2019, 35: 1988-1996. [3]裴新军, 程 格, 潘新宇, 等. 刀剪用马氏体不锈钢的现状和发展[J]. 热处理, 2020, 35(4): 1-6. Pei Xinjun, Cheng Ge, Pan Xinyu, et al. Current situation and development of martensitic stainless steel for knifes and scissors[J]. Heat Treatment, 2020, 35(4): 1-6. [4]Majdouline M, Itziar I A, Hicham B Y, et al. Microstructural evolution of heat-treated Cr-W-V-Mo steels: Effect of core-shell carbides and secondary precipitation on their abrasion resistance[J]. Journal of Materials Research and Technology, 2023, 24: 27-38. [5]Barlow L D, Toit M D. Effect of austenitizing heat treatment on the microstructure and hardness of martensitic stainless steel AISI 420[J]. Journal of Materials Engineering and Performance, 2012, 21(7): 1327-1336. [6]Siqueira J S, Alves M R D A, Thaís M L, et al. Effect of heat treatment on the chromium-depleted zones of a high carbon martensitic stainless steel[J]. Materials and Corrosion, 2021, 72(11): 1752-1761. [7]Hong H D T, Hong H N, Ngoc M N, et al. Effects of the destabilisation heat treatments on the precipitation of secondary carbides and their effect on the corrosion of 27wt% chromium white cast iron[J]. ISIJ International, 2021, 61(5): 1660-1668. [8]陶 申, 张覃轶, 郝 强, 等. AUS-10马氏体不锈钢厨刀腐蚀失效研究[J]. 热加工工艺, 2022, 51(22): 161-165. Tao Shen, Zhang Qinyi, Hao Qiang, et al. Study on corrosion failure of kitchen knife made of AUS-10 martensitic stainless steel[J]. Hot Working Technology, 2022, 51(22): 161-165. [9]Ma C K, Xia Z B, Guo Y F, et al. Carbides refinement and mechanical properties improvement of H13 die steel by magnetic-controlled electroslag remelting[J]. Journal of Materials Research and Technology, 2022, 19: 3272-3286. [10]Shi C B, Zhu Q T, Yu W T, et al. Effect of oxide inclusions modification during electroslag remelting on primary carbides and toughness of a high-carbon 17mass% Cr tool steel[J]. Journal of Materials Engineering and Performance, 2016, 25(11): 1-11. [11]迟宏宵, 刘继浩, 殷军伟, 等. Cr12Mo1V1模具钢碳化物分断细化热处理技术[J]. 材料热处理学报, 2023, 44(1): 87-94. Chi Hongxiao, Liu Jihao, Yin Junwei, et al. Heat treatment technology of carbide breaking and refining of Cr12Mo1V1 die steel[J]. Transactions of Materials and Heat Treatment, 2023, 44(1): 87-94. [12]Pan F S, Wang W Q, Tang A T, et al. Phase transformation refinement of coarse primary carbides in M2 high speed steel[J]. Progress in Natural Science Materials International, 2011, 21(2): 180-186. [13]徐 锟, 侯兴慧, 刘喜海, 等. 冷轧辊用MC5锻钢的碳化物超细化工艺[J]. 金属热处理, 2018, 43(8): 103-107. Xu Kun, Hou Xinghui, Liu Xihai, et al. Carbide ultra-fine process of MC5 forging steel for cold roller[J]. Heat Treatment of Metals, 2018, 43(8): 103-107. [14]林发驹, 李 雄, 吴铖川. 冷轧辊用半高速钢碳化物细化工艺技术研究[J]. 钢铁钒钛, 2021, 42(3): 162-171. Lin Faju, Li Xiong, Wu Chengchuan. Study on the carbide refining technology of semi high speed steel for cold rolle[J]. Iron Steel Vanadium Titanium, 2021, 42(3): 162-171. [15]Li J, Zhang P, He T, et al. Effect of carbides on high-temperature aging embrittlement in 12%Cr martensitic heat-resistant steel[J]. Journal of Materials Research and Technology, 2019, 8(6): 5833-5846. [16]Hassani F Z, Ketabchi M, Bruschi S, et al. Effects of carbide precipitation on the microstructural and tribological properties of Co-Cr-Mo-C medical implants after thermal treatment[J]. Journal of Materials Science, 2016, 51(9): 4495-4508. [17]Zhu Q, Li J, Shi C, et al. Effect of quenching process on the microstructure and hardness of high-carbon martensitic stainless steel[J]. Journal of Materials Engineering and Performance, 2015, 24(11): 4313-4321. [18]Yang Yudan, Zhao Hongshan, Dong Han. Carbide evolution in high-carbon martensitic stainless cutlery steels during austenitizing[J]. Journal of Materials Engineering and Performance, 2020, 29(6): 3868-3875. [19]Xiao Yuqin, Xiao Junyan, Da Weihuang, et al. Evolution behavior of M23C6 carbides under different hot deformation conditions in alloy 602 CA[J]. Metals and Materials International, 2019, 25(6): 1616-1625. [20]郝欣欣, 席 通, 张宏镇, 等. 淬火温度对含铜5Cr15MoV马氏体不锈钢性能的影响[J]. 材料研究学报, 2021, 35(12): 933-941. Hao Xinxin, Xi Tong, Zhang Hongzhen, et al. Effect of quenching temperature on microstructure and properties of Cu-bearing 5Cr15MoV martensitic stainless steel[J]. Chinese Journal of Materials Research, 2021, 35(12): 933-941. [21]曹 方, 杨卯生, 杨树峰, 等. 高氮不锈轴承钢碳化物分布与高温断裂机制[J]. 钢铁, 2022, 57(6): 132-142. Cao Fang, Yang Maosheng, Yang Shufeng, et al. Carbide distribution and high-temperature fracture mechanism of high nitrogen stainless bearing steel[J]. Iron and Steel, 2022, 57(6): 132-142. [22]Zhao Y G, Liu W, Fan Y M, et al. Assessment of the correlation between M23C6 precipitates and pitting corrosion resistance of 0Cr13 martensitic stainless steel[J]. Corrosion Science, 2021, 189: 109580. [23]黄一川, 王 清, 张 爽, 等. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664. Huang Yichuan, Wang Qing, Zhang Shuang, et al. Optimization of stainless steel composition for fuel cell bipolar plates[J]. Acta Metallurgica Sinica, 2021, 57(5): 651-664. |