[1]王 震. AZ80镁合金形变热处理强韧化机制研究[D]. 太原: 中北大学, 2022. Wang Zhen. Study on the mechanism of strengthening and toughening of AZ80 magnesium alloy by deformation heat treatment[D]. Taiyuan: North University of China, 2022. [2]鲁若鹏, 姚珂宇, 李 昆, 等. 铝含量对镁合金阻尼性能的影响[J]. 特种铸造及有色合金, 2020, 40(11): 1195-1198. Lu Ruopeng, Yao Keyu, Li Kun, et al. Influences of trace aluminum on the damping performance of magnesiumy alloy[J]. Special Casting and Nonferrous Alloys, 2020, 40(11): 1195-1198. [3]张 军, 寇子明, 杨亚琴, 等. AZ31和ZK60变形镁合金阻尼性能的研究[J]. 兵器材料科学与工程, 2017, 40(3): 115-118. Zhang Jun, Kou Ziming, Yang Yaqin, et al. Damping properties of AZ31 and ZK60 wrought magnesium alloys[J]. Ordnance Material Science and Engineering, 2017, 40(3): 115-118. [4]朱嘉欣, 孙有平, 陈少机, 等. 固溶时效处理对Mg-4Zn-0.3Zr合金显微组织及阻尼性能的影响[J]. 金属热处理, 2023, 48(7): 97-102. Zhu Jiaxin, Sun Youping, Chen Shaoji, et al. Effect of solution-aging treatment on microtructure and damping properties of Mg-4Zn-0.3Zr alloy[J]. Heat Treatment of Metals, 2023, 48(7): 97-102. [5]Chen X, Zhang D, Zhao Y, et al. Effect of microalloyed Ca on microstructure and mechanical properties of Mg-6Zn-1Mn-4Sn (wt. %) alloy[J]. Journal of Materials Research and Technology, 2022, 17: 925-936. [6]李旭娇. 热处理对Mg-8Zn-1Cu-xAl镁合金微观组织的影响[D]. 兰州: 兰州理工大学, 2021. Li Xujiao. Effects of heat treatment on microstructure of Mg-8Zn-1Cu-xAl magnesium alloy[D]. Lanzhou: Lanzhou University of Technology, 2021. [7]闫 勇. 不同变形态Mg-13Gd-4Y-2Zn-0.5Zr合金热处理行为研究[D]. 太原: 中北大学, 2019. Yan Yong. Study on heat treatment behavior of Mg-13Gd-4Y-2Zn-0.5Zr alloys with different deformation[D]. Taiyuan: North University of China, 2019. [8]周凯旋. 可热处理Mg-Al-xCa-Mn-Sr压铸镁合金微观组织及性能的研究[D]. 重庆: 重庆大学, 2022. Zhou Kaixuan. Microstructure and properties of heat treatable Mg-Al-xCa-Mn-Sr die-casting magnesium alloy[D]. Chongqing: Chongqing University, 2019. [9]杨剑桥. 热处理对Mg-7Zn-0.3Mn-xCu镁合金微观组织及性能的影响[D]. 兰州: 兰州理工大学, 2020. Yang Jianqiao. Effects of heat treatment on microstructure and properties of Mg-7Zn-0.3Mn-xCu magnesium alloy[D]. Lanzhou: Lanzhou University of Technology, 2020. [10]方德俊, 孙有平, 何江美, 等. 退火工艺对轧制态Mg-Al-Ca-Mn-Zn合金组织和力学性能影响[J]. 特种铸造及有色合金, 2023, 43(4): 488-493. Fang Dejun, Sun Youping, He Jiangmei, et al. Effect of annealing process on microstructure and mechanical properties of MgAl-Ca-Mn-Zn magnesium alloy rolled sheet[J]. Special Casting and Nonferrous Alloys, 2023, 43(4): 488-493. [11]刘光明, 杨丽峡, 黄庆学, 等. 轧后热处理工艺对AZ31镁合金铸轧板组织性能的影响[J]. 材料热处理学报, 2019, 40(6): 26-32. Liu Guangming, Yang Lixia, Huang Qingxue, et al. Effect of post-rolling heat treatment on microstructure and properties of AZ31 magnesium alloy cast-rolled sheet[J]. Transactions of Materials and Heat Treatment, 2019, 40(6): 26-32. [12]刘 伟. Ca对AZ80镁合金组织结构和性能的影响研究[D]. 太原: 太原科技大学, 2020. Liu Wei. Effect of Ca on microstructure and properties of AZ80 magnesium alloy[D]. Taiyuan: Taiyuan University of Science and Technology, 2020. [13]王 森. Mg-6Al-3Sn-2Zn合金变形机制和组织性能的研究[D]. 青岛: 青岛理工大学, 2022. Wang Sen. Study on deformation mechanism, microstructure and propeties of Mg-6Al-3Sn-2Zn alloy[D]. Qingdao: Qingdao University of Technology, 2022. [14]孙文君. 固溶时效处理对医用Mg-Zn-Ca-Zr合金显微组织和力学性能的影响[D]. 太原: 太原理工大学, 2020. Sun Wenjun. The Effect of solution and aging treatment on the microstructure and proporties of medical Mg-Zn-Ca-Zr alloys[D]. Taiyuan: Taiyuan University of Technology, 2020. [15]左 静. Mg-Al-Ca-Mn镁合金丝材微观组织及力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. Zuo Jing. Microstructure and mechanical properties of Mg-Al-Ca-Mn alloy wires[D]. Harbin: Harbin Institute of Technology, 2021. [16]魏振雄. AZ61Ce镁合金板材热加工图及组织分析研究[D]. 鞍山: 辽宁科技大学, 2020. Wei Zhenxiong. Hot processing map and microstructure analysis of AZ61Ce magnesium alloy sheet[D]. Anshan: University of Science and Technology Liaoning, 2020. [17]侯彩红. Ca及Al对Mg-Zn-Sn-Mn变形镁合金显微组织和力学性能的影响[D]. 湘潭: 湘潭大学, 2021. Hou Caihong. Effect of Ca and Al addition on the microstructure and mechanical properties of Mg-Zn-Sn-Mn alloy[D]. Xiangtan: Xiangtan University, 2021. [18]刘小清. 低合金化Mg-Ca-(Al)-(Mn)挤压镁合金显微组织调控与强韧化机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2022. Liu Xiaoqing. Microstructural regulation, strengthening and toughening mechanism of low-alloyed Mg-Ca-(Al)-(Mn) extruded magnesium alloys[D]. Harbin: Harbin Institute of Technology, 2022. [19]李培亮. 高锌含量Mg-Zn-Al-Cu-Mn系列合金组织与力学性能研究[D]. 济南: 齐鲁工业大学, 2021. Li Peiliang. Study on microstructure and mechanical properties of Mg-Zn-Al-Cu-Mn series alloys with high Zn content[D]. Jinan: Qilu University of Technology, 2021. [20]王永祥, 李永峭, 虞佳雯, 等. ECAP和时效对Mg-4Zn-1Mn-0.5Ca合金组织和性能的影响[J]. 热加工工艺, 2023(7): 109-112. Wang Yongxiang, Li Yongqiao, Yu Jiawen, et al. Effects of ECAP and aging on microstructure and properties of Mg-4Zn-1Mn-0.5Ca alloy[J]. Hot Working Technology, 2023(7): 109-112. [21]霍学杰. Mg-Zn-Gd-Zr-Ca合金轧制板材的组织与力学性能研究[D]. 太原: 太原理工大学, 2022. Huo Xuejie. Microstructures and mechanical properties of Mg-Zn-Gd-Zr-Ca rolled sheet[D]. Taiyuan: Taiyuan University of Technology, 2022. [22]Zhou X, Yan H, Chen J, et al. Effects of the β′1 precipitates on mechanical and damping properties of ZK60 magnesium alloy[J]. Materials Science and Engineering A, 2021, 804: 140730. [23]Dang C, Wang J, Wang J, et al. An ultrahigh strain-independent damping capacity in Mg-1Mn alloy by cold rolling process[J]. Journal of Materials Research and Technology, 2023, 25: 4330-4341. [24]Zhao D, Chen X, Yuan Y, et al. Development of a novel Mg-Y-Zn-Al-Li alloy with high elastic modulus and damping capacity[J]. Materials Science and Engineering A, 2020, 790: 139744. [25]Liu Q, Ma J, Luan S, et al. Temperature damping capacity and microstructure evolution of Mg-Al-Zn-Sn alloy[J]. Journal of Materials Research and Technology, 2023, 25: 7364-7375. |