[1]范长刚, 董 瀚, 时 捷, 等. 2200 MPa级超高强度低合金钢的组织和力学性能[J]. 兵器材料科学与工程, 2006(2): 31-35. Fan Changgang, Dong Han, Shi Jie, et al. Microstructure and mechanical properties of 2200 MPa grade ultra-high strength low alloy steels[J]. Ordnance Material Science and Engineering, 2006(2): 31-35. [2]Li J, Zhan D, Jiang Z, et al. Progress on improving strength-toughness of ultra-high strength martensitic steels for aerospace applications: A review[J]. Journal of Materials Research and Technology, 2023, 23: 172-190. [3]Kim Y K, Kim K S, Song Y B, et al. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness[J]. Journal of Materials Science and Technology, 2021, 66: 36-45. [4]Caballero F G, Bhadeshia H K D H. Very strong bainite[J]. Current Opinion in Solid State and Materials Science, 2004, 8(3/4): 251-257. [5]Tomita Y, Okabayashi K. Improvement in lower temperature mechanical properties of 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel with the second phase lower bainite[J]. Metallurgical Transactions A, 1983, 14(2): 485-492. [6]Tomita Y, Okabayashi K. Mechanical properties of 0.40 pct C-Ni-Cr-Mo high strength steel having a mixed structure of martensite and bainite[J]. Metallurgical Transactions A, 1985, 16(1): 73-82. [7]Tomita Y, Okawa T. Effect of modified heat treatment on mechanical properties of 300M steel[J]. Materials Science and Technology, 1995, 11(3): 245-251. [8]方鸿生, 刘东雨, 常开地, 等. 1500 MPa级经济型贝氏体/马氏体复相钢的组织与性能[J]. 钢铁研究学报, 2001(3): 31-36. Fang Hongsheng, Liu Dongyu, Chang Kaidi, et al. Microstructure and properties of 1500 MPa economical bainite/martensite duplex phase steel[J]. Journal Iron and Steel Research, 2001(3): 31-36. [9]方鸿生, 冯 春, 郑燕康, 等. 新型Mn系空冷贝氏体钢的创制与发展[J]. 热处理, 2008, 23(3): 2-19. Fang Hongsheng, Feng Chun, Zheng Yankang, et al. Creation and development of novel Mn series air cooled bainitic steels[J]. Heat Treatment, 2008, 23(3): 2-19. [10]Fang H S, Zheng Y K, Chen X Y, et al. Novel air-colled bainitic steels[J]. Journal of Metals, 1988, 40(3): 51. [11]高古辉, 桂晓露, 谭谆礼, 等. Mn-Si-Cr系无碳化物贝氏体/马氏体复相高强钢的研究进展[J]. 材料导报, 2017, 31(11): 74-81. Gao Guhui, Gui Xiaolu, Tan Zhunli, et al. Carbide-free bainite/martensite multiphase high strength steels: A review[J]. Materials Review, 2017, 31(11): 74-81. [12]熊金生, 宁 静, 苏 杰, 等. 固溶温度对G33超高强度钢微观组织和力学性能的影响[J]. 金属热处理, 2021, 46(7): 160-164. Xiong Jinsheng, Ning Jing, Su Jie, et al. Effect of solution temperature on microstructure and mechanical properties of ultra-high strength steel G33[J]. Heat Treatment of Metals, 2021, 46(7): 160-164. [13]Liu Z B, Tu X, Wang X H, et al. Carbide dissolution and austenite grain growth behavior of a new ultrahigh-strength stainless steel[J]. Journal of Iron and Steel Research International, 2020, 27(6): 732-741. [14]Lü L F, Fu L M, Sun Y L, et al. Microstructure and mechanical behaviour of ultra-high strength of fine-grained AISI 4140 steel[J]. Materials Research Innovations, 2015, 19(S4): 64-67. [15]Furuhara T, Kikumoto K, Saito H, et al. Phase transformation from fine-grained austenite[J]. ISIJ International, 2008, 48(8): 1038-1045. [16]Jr J W M. Comments on the microstructure and properties of ultrafine grained steel[J]. ISIJ International, 2008, 48(8): 1063-1070. [17]Wang C F, Wang M Q, Shi J, et al. Effect of microstructural refinement on the toughness of low carbon martensitic steel[J]. Scripta Materialia, 2008, 58(6): 492-495. [18]Hartshorne M I, McCormick C, Schmidt M, et al. Analysis of a new high-toughness ultra-high-strength martensitic steel by transmission electron microscopy and atom probe tomography[J]. Metallurgical and Materials Transactions A, 2016, 47(4): 1517-1528. [19]宁 静, 杨卓越, 苏 杰, 等. 固溶温度对30Cr4Si2NiMoWNb超高强度钢力学性能的影响[J]. 钢铁研究学报, 2017, 29(12): 1030-1034. Ning Jing, Yang Zhuoyue, Su Jie, et al. Influence of solution treatment temperature on mechanical properties of 30Cr4Si2NiMoWNb steel[J]. Journal of Iron and Steel Research, 2017, 29(12): 1030-1034. [20]方 萍, 苏 杰, 赵晓丽, 等. 奥氏体化温度对30Cr4Si2NiMoNb超高强度钢强韧性的影响[J]. 金属热处理, 2013, 38(5): 88-91. Fang Ping, Su Jie, Zhao Xiaoli, et al. Effect of austenitizing temperature on strength-toughness of 30Cr4Si2NiMoNb ultrahigh strength steel[J]. Heat Treatment of Metals, 2013, 38(5): 88-91. [21]Lee S J, Park J S, Lee Y K. Effect of austenite grain size on the transformation kinetics of upper and lower bainite in a low-alloy steel[J]. Scripta Materialia, 2008, 59(1): 87-90. [22]Lan L Y, Qiu C L, Zhao D W, et al. Effect of austenite grain size on isothermal bainite transformation in low carbon microalloyed steel[J]. Materials Science and Technology, 2011, 27(11): 1657-1663. [23]Garcia-Mateo C, Caballero F G, Bhadeshia H K D H. Development of hard bainite[J]. ISIJ International, 2003, 43(8): 1238-1243. [24]Xu G, Liu F, Wang L, et al. A new approach to quantitative analysis of bainitic transformation in a super bainite steel[J]. Scripta Materialia, 2013, 68(11): 833-836. [25]Toji Y, Matsuda H, Raabe D. Effect of Si on the acceleration of bainite transformation by pre-existing martensite[J]. Acta Materialia, 2016, 116: 250-262. [26]Gui X L, Gao G H, Guo H, et al. Effect of bainitic transformation during BQ&P process on the mechanical properties in an ultrahigh strength Mn-Si-Cr-C steel[J]. Materials Science and Engineering A, 2017, 684: 598-605. [27]Wang K, Tan Z, Gao G, et al. Microstructure-property relationship in bainitic steel: The effect of austempering[J]. Materials Science and Engineering A, 2016, 675: 120-127. [28]Yu Y S, Wang Z Q, Wu B B, et al. Tailoring variant pairing to enhance impact toughness in high-strength low-alloy steels via trace carbon addition[J]. Acta Metallurgica Sinica, 2021, 34: 755-764. [29]Stormvinter A, Miyamoto G, Furuhara T, et al. Effect of carbon content on variant pairing of martensite in Fe-C alloys[J]. Acta Materialia, 2012, 60(20): 7265-7274. |