[1]Wang L, Li M, Almer J. Investigation of deformation and microstructural evolution in Grade 91 ferritic-martensitic steel by in situ high-engergy X-rays[J]. Acta Materialia, 2004, 62(1): 239-249. [2]Viswanathan R, Bakker W. Materials for ultrasupercritical coal power plants-turbine materials: Part II[J]. Journal of Materials Engineering and Properties, 2001, 10(1): 96-101. [3]Masuyama F. History of power plants and progress in heat resistant steels[J]. Iron and Steel Institute of Japan International, 2001, 41(6): 612-625. [4]Cerri E, Evangelista E, Spigarelli S, et al. Evolution of microstructure in a modified 9Cr-1Mo steel during short term creep[J]. Materials Science and Engineering A, 1998, 245(2): 285-292. [5]Yoshizawa M, Igarashi M. Long-term creep deformation characteristics of advanced ferritic steels for USC power plants[J]. International Journal Pressure Vessels and Piping, 2007, 84(1-2): 37-43. [6]桂 香. 高参数火电机组用新型耐热钢的热变形行为[D]. 镇江: 江苏大学, 2020. Gui Xiang. Hot deformation behavior of new heat resistant-steel for high steam condition thermal power units[D]. Zhenjiang: Jiangsu University, 2020. [7]刘建章. 核结构材料[M]. 北京: 化学工业出版社, 2007. Liu Jianzhang. Nuclear Structural Material[M]. Beijing: Chemical Industry Press, 2007. [8]Abe F, Horiuchi T, Taneike M, et al. Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature[J]. Materials Science and Engineering A, 2004, 378(1): 299-303. [9]Porollo S I, Dvoriashin A M, Yu V, et al. Microstructure and mechanical properties of ferritic/martensitic steel EP-823 after neutron irradiation to high doses in BOR-60[J]. Journal of Nuclear Materials, 2004, 329-333(1): 314-318. [10]Vitek J M, Klueh R L. Precipitation reactions during the heat treatment of ferritic steels[J]. Metallurgical Transactions A, 1983, 14(5): 1047-1055. [11]Abe F. Precipitate design for creep strengthening of 9%Cr tempered martensitic steel for ultra-supercritical power plants[J]. Science and Technology of Advanced Materials, 2008, 9(1): 013002. [12]Lucas A, Simon P, Bourdon G, et al. Metallurgical aspects of ultra fast cooling in front of the down-coiler[J]. Steel Research International, 2004, 5(2): 139-146. [13]Tan L, Busby J T. Formulating the strength factor a for improved predictability of radiation hardening[J]. Journal of Nuclear Materials, 2015, 465: 724-730. [14]Leda H. Nitrogen in martensitic stainless steels[J]. Journal of Materials Processing Technology, 1995, 53(1/2): 263-272. [15]Kim S H, Song B J, Ryu W S, et al. Creep rupture properties of nitrogen added 10Cr ferritic/martensitic steels[J]. Journal of Nuclear Materials, 2004, 329: 299-303. [16]崔忠圻, 覃耀春. 金属学与热处理[M]. 2版. 北京: 机械工业出版社, 2020. Cui Zhongqi, Qin Yaochun. Metallography and Heat Treatment[M]. 2nd edition. Beijing: China Machine Press, 2020. [17]Uggowitze P J, Magdowski R, Speidel M O. Nickel free high nitrogen austenitic steels[J]. Iron and Steel Institute of Japan International, 1996, 36(7): 901-908. [18]Speidel H J C, Speidel M O. Nickel and chromium-based high nitrogen alloys[J]. Material and Manufacturing Processes, 2004, 19(1): 95-109. [19]雍岐龙. 钢铁中的第二相[M]. 北京: 冶金工业出版社, 2006. Yong Qilong. The Second Phase in Iron and Steel Materials[M]. Beijing: Metallurgical Industry Press, 2006. [20]Maruyama K, Sawada K, Koike J I. Strengthening mechanisms of creep resistant tempered martensitic steel[J]. Iron and Steel Institute of Japan International, 2001, 41(6): 641-653. [21]夏志新. 低活化钢中析出型相变及其对力学性能的影响[D]. 北京: 清华大学, 2011. Xia Zhixin. Precipitation behaviors and its effect on mechanical properties in reduced activation steesls[D]. Beijing: Tsinghua University, 2011. [22]Sun J, Zhang Y, Wang P, et al. Effect of N on the microstructure and mechanical properties of high Si martensitic heat-resistant steels[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(4): 573-584. [23]赵义瀚, 赵成志, 王健楠, 等. δ铁素体形成机制以及对马氏体耐热钢冲击功的影响[J]. 钢铁, 2013, 48(4): 70-75. Zhao Yihan, Zhao Chengzhi, Wang Jiannan, et al. Forming mechanism of δ-ferrite and its effect on martensite heat-resistant steel impact energy[J]. Iron and Steels, 2013, 48(4): 70-75. |