[1]唐 荻, 赵征志, 米振莉, 等. 汽车用先进高强板带钢[M]. 北京: 冶金工业出版社, 2016. [2]储双杰, 毛 博, 胡广魁. 汽车用先进高强度冷轧双相钢的显微组织调控和强韧化机理[J]. 金属学报, 2022, 58(4): 551-566. Chu Shuangjie, Mao Bo, Hu Guangkui. Microstructure control and strengthening mechanism of high strength cold rolled dual phase steels for automobile applications[J]. Acta Metallurgica Sinica, 2022, 58(4): 551-566. [3]侯晓英, 刘晓美, 郝 亮. 不同屈强比的冷轧DP780钢工艺调控技术分析[J]. 中国冶金, 2019, 9(2): 29-33. Hou Xiaoying, Liu Xiaomei, Hao Liang. Analysis on process control technology of cold rolling DP780 steel with different yield ratios[J]. China Metallurgy, 2019, 9(2): 29-33. [4]赵征志, 佟婷婷, 赵爱民, 等. 1470 MPa级双相钢的性能特征与强韧化机制[J]. 材料研究学报, 2014, 28(11): 828-834. Zhao Zhengzhi, Tong Tingting, Zhao Aimin, et al. Mechanical properties and strengthen-toughening mechanism of 1470 MPa grade dual-phase steel[J]. Chinese Journal of Materials Research, 2014, 28(11): 828-834. [5]孙耀祖, 王 旭, 王运玲, 等. 汽车用双相钢的研究进展[J]. 中国材料进展, 2015, 34(6): 475-481. Sun Yaozu, Wang Xu, Wang Yunling, et al. Research progress on DP steel for automobiles[J]. Materials China, 2015, 34(6): 475-481. [6]李 琳, 徐锐良, 李忠利, 等. 带状组织对铁素体-马氏体钢拉伸断裂行为的影响[J]. 热加工工艺, 2021, 50(14): 46-50. Li Lin, Xu Ruiliang, Li Zhongli, et al. Effect of banded structure on tensile fracture behavior of ferritic-martensitic steel[J]. Hot Working Technology, 2021, 50(14): 46-50. [7]柳得橹, 邵伟然, 孙贤文, 等. 钢的表面带状组织及其引起的冷弯裂纹[J]. 北京科技大学学报, 2005(1): 40-44. Liu Delu, Shao Weiran, Sun Xianwen, et al. Superficial banded structure and its effects on bending flaws of low carbon steel strips[J]. Journal of University of Science and Technology Beijing, 2005(1): 40-44. [8]杨飞飞, 张忠铧, 刘华松, 等. 高强度油井管用钢带状偏析及其条带型混晶现象研究[J]. 钢铁研究学报, 2021, 33(9): 979-986. Yang Feifei, Zhang Zhonghua, Liu Huasong, et al. Banded segregation and its related band-typed mixed grain structure in high strength oil well pipe steel[J]. Journal of Iron and Steel Research, 2021, 33(9): 979-986. [9]康永林. 现代汽车板工艺及成形理论技术[M]. 北京: 冶金工业出版社, 2009. [10]杨永坤, 朱佳雨, 李小明, 等. 低碳合金钢带状组织控制研究现状[J]. 钢铁, 2023, 58(4): 1-10. Yang Yongkun, Zhu Jiayu, Li Xiaoming, et al. A review of research on banded structure controlling low carbon alloy steel[J]. Iron and Steel, 2023, 58(4): 1-10. [11]梁 文, 刘永前, 胡 俊, 等. 影响低碳高强钢中心偏析和带状组织的因素及改进措施[J]. 上海金属, 2019, 41(5): 66-72. Liang Wen, Liu Yongqian, Hu Jun, et al. Factors influencing center segregation and banded structure in low-carbon high-strength steel and measures improving them[J]. Shanghai Metals, 2019, 41(5): 66-72. [12]马才女, 高雪云, 邢 磊, 等. 铁素体/马氏体双相钢拉伸变形过程中应力应变不均匀性分析[J]. 材料导报, 2023, 37(11): 182-185. Ma Cainu, Gao Xueyun, Xing Lei, et al. Analysis of stress and strain inhomogeneity during the tensile deformation of ferrite/martensitic dual phase steel[J]. Materials Review, 2023, 37(11): 182-185. [13]Das A, Tarafder S, Sivaprasad S, et al. Influence of microstructure and strain rate on the strain partitioning behaviour of dual phase steels[J]. Materials Science and Engineering A, 2019, 754: 348-360. [14]Takashi Matsuno, Tomoya Yoshioka, Ikumu Watanabe, et al. Three-dimensional finite element analysis of representative volume elements for characterizing the effects of martensite elongation and banding on tensile strength of ferrite-martensite dual-phase steels[J]. International Journal of Mechanical Sciences, 2019, 163: 105-133. [15]Narasaiah N, Ray K K. Small crack formation in a low carbon steel with banded ferrite-pearlite structure[J]. Materials Science and Engineering A, 2005, 392(1/2) : 269-277. |