[1]Gu Jinbo, Li Jingyuan, Jun Yanagimoto, et al. Microstructural evolution and mechanical property changes of a new nitrogen-alloyed Cr-Mo-V hot-working die steel during tempering[J]. Materials Science and Engineering A, 2021, 804: 140721. [2]方健儒, 姜启川, 韩增祥, 等. 热作模具钢在高温热机械应力循环下的疲劳断裂行为[J]. 材料工程, 2002(10): 11-14. Fang Jianru, Jiang Qichuan, Han Zengxiang, et al. High temperature fatigue and fracture behavior of hot work die steel under mechanical and thermo-mechanical cyclic loads[J]. Journal of Materials Engineering, 2002(10): 11-14. [3]Kumar R, Sanyal S, Bhagyaraj J, et al. Deformation and damage mechanisms during clockwise diamond and counter clockwise diamond thermomechanical fatigue in Timetal 834 alloy[J]. International Journal of Fatigue, 2024, 179: 108039. [4]张 剑, 姜 华, 赵云松, 等. 一种镍基单晶高温合金的反相热机械疲劳行为[J]. 重庆大学学报, 2020, 43(12): 78-86. Zhang Jian, Jiang Hua, Zhao Yunsong, et al. On thermo-mechanical fatigue behaviors of a nickel-base single crystal superalloy[J]. Journal of Chongqing University, 2020, 43(12): 78-86. [5]Saad A A, Sun W, Hyde T H, et al. Cyclic softening behaviour of a P91 steel under low cycle fatigue at high temperature[J]. Procedia Engineering, 2011, 10(7), 1103-1108. [6]Pan Xiangming, Li Xin, Chang Le, et al. Thermal-mechanical fatigue behavior and lifetime prediction of P92 steel with different phase angles[J]. International Journal of Fatigue, 2018, 109: 126-136. [7]曾 艳. 压铸模具钢在热机械载荷作用下的微观组织演变行为研究[D]. 上海: 上海大学, 2019. Zeng Yan. Research on microstructure evolution behavior of die-casting die steel based on thermo-mechanical loading[D]. Shanghai: Shanghai University, 2019. [8]Balazs Fekete, Peter Trampus. Trampus isothermal and thermal-mechanical fatigue of VVER-440 reactor pressure vessel steels[J]. Journal of Nuclear Materials, 2015, 464: 394-404. [9]Nagesha A, Kannan R, Parameswaran P, et al. A comparative study of isothermal and thermo-mechanical fatigue on type 316L(N) austenitic stainless steel[J]. Materials Science and Engineering A, 2010, 527(21): 5969-5975. [10]Ahmed Azeez, Robert Eriksson, Viktor Norman, et al. The effect of dwell times and minimum temperature on out-of-phase thermomechanical fatigue crack propagation in a steam turbine steel—Crack closure prediction[J]. International Journal of Fatigue, 2022, 162: 106971. [11]朱 超. 超高强度钢板的热冲压成形模具设计及优化[D]. 吉林: 吉林大学, 2010. Zhu Chao. Designing and optimizing of hot stamping tools of ultra high strength steels[D]. Jilin: Jilin University, 2010. [12]董晨辉, 吴博雅, 吴晓春. SDYZ热作模具钢的热机械疲劳行为[J]. 机械工程材料, 2023, 47(10): 26-30, 54. Dong Chenhui, Wu Boya, Wu Xiaochun. Thermal-mechanical fatigue behavior of SDYZ hot-working die steel[J]. Materials for Mechanical Engineering, 2023, 47(10): 26-30, 54. [13]钱春华, 崔海涛, 温卫东. 镍基高温合金GH4169的热机械疲劳行为[J]. 材料研究学报, 2023, 37(2): 145-151. Qian Chunhua, Cui Haitao, Wen Weidong. Investigation on thermo-mechanical fatigue behavior of GH4169 alloy[J]. Chinese Journal of Materials Research, 2023, 37(2): 145-151. [14]李兵兵. 国产核级316LN不锈钢热机械疲劳性能研究[D]. 天津: 天津大学, 2021. Li Bingbing. A study on the thermomechanical fatigue properties of domestic nuclear grade 316LN stainless steel[D]. Tianjin: Tianjin University, 2021. |