[1]姚红红, 邹德宁, 周雨晴, 等. 固溶温度对06Cr25Ni20奥氏体耐热钢微观组织和力学性能的影响[J]. 上海金属, 2017, 39(6): 22-25. Yao Honghong, Zou Dening, Zhou Yuqing, et al. Effect of solution temperature on microstructure and mechanical properties of the 06Cr25Ni20 austenitic heat-resistant steel[J]. Shanghai Metals, 2017, 39(6): 22-25. [2]刘天增, 王 珂, 邹德宁. 06Cr25Ni20氧化铁皮演变及机制探讨[J]. 钢铁研究学报, 2021, 33(2): 175-181. Liu Tianzeng, Wang Ke, Zou Dening. Evolution and mechanism analysis of oxide scale of the 06Cr25Ni20 stainless steel[J]. Journal of Iron and Steel Research, 2021, 33(2): 175-181. [3]王 孟, 王 忠, 孙世超, 等. 06Cr25Ni20不锈钢的热压缩变形行为[J]. 材料热处理学报, 2014, 35(12): 222-225. Wang Meng, Wang Zhong, Sun Shichao, et al. Hot compressive deformation behavior of the 06Cr25Ni20 stainless steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(12): 222-225. [4]黄俊霞, 毕洪运, 李 实. 309S奥氏体耐热钢的高温性能研究[J]. 宝钢技术, 2021(1): 24-28. Huang Junxia, Bi Hongyun, Li Shi. Study on the high temperature properties of heat resistant steel 309S[J]. Baosteel Technology, 2021(1): 24-28. [5]王兆民, 王 硕, 申 雷. 22Cr-25Ni奥氏体耐热钢高温时效的组织及性能[J]. 金属热处理, 2020, 45(3): 46-49. Wang Zhaomin, Wang Shuo, Shen Lei. Mechanical and properties of austenitic heat resistant steel 22Cr-25Ni after high temperature aging[J]. Heat Treatment of Metals, 2020, 45(3): 46-49. [6]孟 倩, 李东阳, 杨江仁, 等. 310S耐热钢的高温氧化行为[J]. 材料工程. 2022, 50(9): 137-149. Meng Qian, Li Dongyang, Yang Jiangren, et al. High temperature oxidation behavior of 310S heat-resistant steel[J]. Journal of Materials Engineering, 2022, 50(9): 137-149. [7]苗华军, 李国平. 310S耐热不锈钢高温长期时效过程中的组织演变[J]. 金属热处理, 2021, 46(7): 56-59. Miao Huajun, Li Guoping. Microstructure evolution of 310S heat-resistant stainless steel during long term aging at high temperature[J]. Heat Treatment of Metals, 2021, 46(7): 56-59. [8]Qian Jiong, Chen Changfeng, Yu Haobo, et al. The influence and mechanism of the precipitate/austenite C-enrichment on the intergranular corrosion sensitivity in 310S stainless steel[J]. Corrosion Science, 2016, 111: 352-361. [9]杨照明, 韩静涛, 刘 静, 等. 奥氏体耐热不锈钢310S的抗高温氧化性能研究[J]. 热加工工艺, 2006, 35(14): 33-34, 57. Yang Zhaoming, Han Jingtao, Liu Jing, et al. Study on oxidation resistance of 310S austenitic stainless steel[J]. Hot Working Technology, 2006, 35(14): 33-34, 57. [10]Yan J, Gu Y, Sun F, et al. Evolution of microstructure and mechanical properties of a 25Cr-20Ni heat resistant alloy after long-term service[J]. Materials Science and Engineering A, 2016, 675(15): 289-298. [11]刘锦云, 蒲 霞, 孙 超, 等. 氢化物对N18锆合金原位拉伸断裂行为的影响[J]. 稀有金属材料与工程, 2017, 46(3): 711-715. Liu Jinyun, Pu Xia, Sun Chao, et al. Effects of hydrides on fracture behavior of N18 zirconium alloy during in situ tension[J]. Rare Metal Materials and Engineering, 2017, 46(3): 711-715. [12]程 磊, 余 伟, 蔡庆伍. 显微带细化组织和两相组织对低Cr合金钢高温断裂行为的影响[J]. 材料研究学报, 2020, 34(1): 21-28. Cheng Lei, Yu Wei, Cai Qingwu. Influence of microbands refined microstructure and two phase microstructure on high temperature fracture behaviors of a low Cr alloy steel[J]. Chinese Journal of Material Research, 2020, 34(1): 21-28. [13]郁钧超, 何建丽, 刘旭东, 等. 不同应变速率和缺口尺寸对316LN高温断裂行为的影响[J]. 热加工工艺, 2017, 46(24): 72-75. Yu Junchao, He Jianli, Liu Xudong, et al. Effect of strain rates and notch shape on high-temperature fracture behavior of 316LN stainless steel[J]. Hot Working Technology, 2017, 46(24): 72-75. [14]张静武. 金属塑性变形与断裂的TEM/SEM原位研究[D]. 秦皇岛: 燕山大学, 2002. Zhang Jingwu. In-situ TEM/SEM study of plastic deformation and fracture of metals[D]. Qinhuangdao: Yanshan University, 2002. [15]宋 虎, 王爱琴, 李继文. A356合金原位拉伸裂纹萌生与扩展行为分析[J]. 热加工工艺, 2010, 39(6): 36-38. Song Hu, Wang Aiqin, Li Jiwen. Analysis on initiation and propagation behavior of in-situ tensile crack in A356 alloy[J]. Hot Working Technology, 2010, 39(6): 36-38. [16]胡海波, 朱丽慧, 段元满, 等. 原位研究M2高速钢微裂纹的萌生和扩展[J]. 材料研究学报, 2022, 36(5): 365-372. Hu Haibo, Zhu Lihui, Dun Yuanman, et al. In-situ study of microcrack initiation and propagation of M2 high speed steel[J]. Chinese Journal of Materials Research, 2022, 36(5): 365-372. [17]代 巧, 张 健, 何爵亨, 等. 基于DIC的304奥氏体不锈钢裂纹尖端塑性区研究[J]. 压力容器, 2022, 39(6): 15-20, 74. Dai Qiao, Zhang Jian, He Jueheng, et al. Study on plastic zone at crack tip of 304 austenitic stainless steel based on DIC[J]. Pressure Vessel Technology, 2022, 39(6): 15-20, 74. [18]王 晋, 张跃飞, 马 晋, 等. lnconel 740H合金原位高温拉伸微裂纹萌生扩展研究[J]. 金属学报, 2017, 53(12): 1627-1635. Wang Jin, Zhang Yuefei, Ma Jin, et al. Microcrack nucleation and propagation investigation of inconel 740H alloy under in situ high temperature tensile test[J]. Acta Metallurgica Sinica, 2017, 53(12): 1627-1635. |