[1]Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61: 1-93. [2]吕昭平, 雷智锋, 黄海龙, 等. 高熵合金的变形行为及强韧化[J]. 金属学报, 2018, 54(11): 1553-1566. Lü Zhaoping, Lei Zhifeng, Huang Hailong, et al. Deformation behavior and toughening of high-entropy alloys[J]. Acta Metallurgica Sinica, 2018, 54(11): 1553-1566. [3]Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [4]Zhou S C, Dai C D, Hou H X, et al. A remarkable toughening high-entropy-alloy wire with a bionic bamboo fiber heterogenous structure[J]. Scripta Materialia, 2023, 226: 115234. [5]Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off[J]. Nature, 2016, 534(7606): 227-230. [6]Yao M J, Pradeep K G, Tasan C C, et al. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility[J]. Scripta Materialia, 2014, 72: 5-8. [7]Su J, Wu X X, Raabe D, et al. Deformation-driven bidirectional transformation promotes bulk nanostructure formation in a metastable interstitial high entropy alloy[J]. Acta Materialia, 2019, 167: 23-39. [8]He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties[J]. Acta Materialia, 2016, 102: 187-196. [9]Yang T, Zhao Y L, Fan L, et al. Control of nanoscale precipitation and elimination of intermediate-temperature embrittlement in multicomponent high-entropy alloys[J]. Acta Materialia, 2020, 189: 47-59. [10]Du X H, Li W P, Chang H T, et al. Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy[J]. Nature Communications, 2020, 11(1): 2390. [11]Liu L Y, Zhang Y, Han J H, et al. Nanoprecipitate-strengthened high-entropy alloys[J]. Advanced Science, 2021, 8(23): 2100870. [12]Fan L, Yang T, Zhao Y L, et al. Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures[J]. Nature Communications, 2020, 11(1): 6240. [13]Gludovatz B, Hohenwarter A, Thurston K, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures[J]. Nature Communications, 2016, 7(1): 10602 [14]Zhang R P, Zhao S T, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy[J]. Nature, 2020, 581(7808): 283-287. [15]Yang Y, Chen T Y, Tan L Z, et al. Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy[J]. Nature, 2021, 595(7866): 245-249. [16]Zhang W R, Liaw P, Zhang Y. Science and technology in high-entropy alloys[J]. Science China Materials, 2018, 61(1): 2-22. [17]陆文杰, 罗 贤, 黄 斌, 等. FCC结构高熵合金的析出强化研究进展[J]. 金属热处理, 2020, 45(9): 1-9. Lu Wenjie, Luo Xian, Huang Bin, et al. Research progress on precipitation strengthening of FCC structure high-entropy alloys[J]. Heat Treatment of Metals, 2020, 45(9): 1-9. [18]Lu K, Lu L, Suresh S, Strengthening materials by engineering coherent internal boundaries at the nanoscale[J]. Science, 2009, 324: 349-352. [19]Liang Y J, Wang L J, Wen Y R, et al. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys[J]. Nature Communications, 2018, 9(1): 4063. [20]Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys[J]. Science, 2018, 362(6417): 933-937. [21]Jang T, Choi W, Kim D, et al. Shear band-driven precipitate dispersion for ultrastrong ductile medium-entropy alloys[J]. Nature Communications, 2021, 12(1): 4703. [22]Li X G, Zhang D W, Liu Z Y, et al. Share corrosion data[J]. Nature, 2015, 527(7579): 441-442. [23]Dai C D, Luo H, Li J, et al. X-ray photoelectron spectroscopy and electrochemical investigation of the passive behavior of high-entropy FeCoCrNiMox alloys in sulfuric acid[J]. Applied Surface Science, 2020, 499: 143903. [24]Dai C D, Fu Y, Pan Y, et al. Microstructure and mechanical properties of FeCoCrNiMo0.1 high-entropy alloy with various annealing treatments[J]. Materials Characterization, 2021, 179: 111313. [25]Choudhuri D, Alam T, Borkar T, et al. Formation of a Huesler-like L21 phase in a CoCrCuFeNiAlTi high-entropy alloy[J]. Scripta Materialia, 2015, 100: 36-39. [26]张 杨, 艾云龙, 陈卫华, 等. 基于相结构的高熵合金设计[J]. 特种铸造及有色合金, 2021, 41(1): 37-42. Zhang Yang, Ai Yunlong, Chen Weihua, et al. Design of high entropy alloy based on the phase structure[J]. Special Casting and Nonferrous Alloys, 2021, 41(1): 37-42. [27]Wang M L, Lu Y P, Wang T M, et al. A novel bulk eutectic high-entropy alloy with outstanding as-cast specific yield strengths at elevated temperatures[J]. Scripta Materialia, 2021, 204: 114132. [28]Ma Y, Wang Q, Jiang B B, et al. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni, Co, Fe, Cr)14 compositions[J]. Acta Materialia, 2018, 147: 213-225. [29]Wang Woei-Ren, Wang Weilin, Wang Shang-Chih, et al. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys[J]. Intermetallics, 2012, 26: 44-51. [30]Chou Hsuanping, Chang Yeeshyi, Chen Swekai, et al. Microstructure, thermophysical and electrical properties in AlxCoCrFeNi(0≤x≤2) high-entropy alloys[J]. Materials Science and Engineering B, 2009, 163(3): 184-189. [31]孙红英, 周张健, 王 曼, 等. 改进310奥氏体不锈钢长期时效后的组织与性能[J]. 工程科学学报, 2015, 37(5): 600-607. Sun Hongying, Zhou Zhangjian, Wang Man, et al. Microstructures and mechanical properties of a new 310 austenitic stainless steel during long term aging[J]. Chinese Journal of Engineering, 2015, 37(5): 600-607. [32]潘 坤. 超级奥氏体不锈钢S32654析出相及其对耐蚀性能的影响[D]. 昆明: 昆明理工大学, 2014. Pan Kun. Study on the precipitates of S3265 super stainless steel and the effect on corrosion resistance[D]. Kunming: Kunming University of Science and Technology, 2014. [33]Li C L, Ma Y, Hao J M, et al. Microstructures and mechanical properties of body-centered-cubic (Al, Ti)0.7(Ni, Co, Fe, Cr)5 high entropy alloys with coherent B2/L21 nanoprecipitation[J]. Materials Science and Engineering A, 2018, 737: 286-296. [34]Wang M L, Lu Y P, Wang T M, et al. A novel bulk eutectic high-entropy alloy with outstanding as-cast specific yield strengths at elevated temperatures[J]. Scripta Materialia, 2021, 204: 114132. [35]张凯强. 马氏体耐热不锈钢析出相的热力学/动力学计算和优化研究[D]. 鞍山: 辽宁科技大学, 2018. Zhang Kaiqiang. Thermodynamic and kinetic calculation and optimization of precipitates in martensitic heat-resistant stainless steel[D]. Anshan: University of Science and Technology Liaoning, 2018. [36]Guo Q, Liu J H, Yu M, et al. Effect of passive film on mechanical properties of martensitic stainless steel 15-5PH in a neutral NaCl solution[J]. Applied Surface Science, 2015, 327: 313-320. [37]Luo H, Li Z M, Mingers A, et al. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution[J]. Corrosion Science, 2018, 134: 131-139. [38]Bensalah M, Sabot R, Triki E, et al. Passivity of Sanicro28(UNS N-08028) stainless steel in polluted phosphoric acid at different temperatures studied by electrochemical impedance spectroscopy and Mott-Schottky analysis[J]. Corrosion Science, 2014, 86: 61-70. [39]Feng Z C, Cheng X Q, Dong C F, et al. Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy[J]. Corrosion Science, 2010, 52(11): 3646-3653. [40]Ameer M A, Fekry A M, Heakal Fel-taib. Electrochemical behaviour of passive films on molybdenum-containing austenitic stainless steels in aqueous solutions[J]. Electrochimica Acta, 2004, 50(1): 43-49. [41]Jorcin J B, Orazem M, Pébère N, et al. CPE analysis by local electrochemical impedance spectroscopy[J]. Electrochimica Acta, 2006, 51(8/9): 1473-1479. [42]Carnot A, Frateur I, Zanna S, et al. Corrosion mechanisms of steel concrete moulds in contact with a demoulding agent studied by EIS and XPS[J]. Corrosion Science, 2003, 45(11): 2513-2524. [43]Fan L, Yang T, Zhao Y L, et al. Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures[J]. Nature Communication, 2020, 11(1): 6240. [44]Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature, 2017, 544(7651): 460-464. [45]田家龙. Co对Fe-Cr-Ni-Co-Mo-Ti系马氏体时效不锈钢的组织和性能的影响[D]. 沈阳: 东北大学, 2018. Tian Jialong. Effect of Co on microstructure and property of Fe-Cr-Ni-Co-Mo-Ti maraging stainless steel[D]. Shenyang: Northeastern University, 2018. [46]Zou L F, Yang C M, Lei Y K, et al. Dislocation nucleation facilitated by atomic segregation[J]. Nature Materials, 2018, 17(1): 56-63. [47]王昭光. 纳米共格析出相对面心立方结构高熵合金的拉伸性能的影响[D]. 上海: 上海交通大学, 2018. Wang Zhaoguang. Effect of coherent nanoprecipitates on the tensile behavior of a fcc-structureed high-entropy alloy[D]. Shanghai: Shanghai Jiao Tong University, 2018. [48]He J Y, Wang H, Wu Y, et al. Precipitation behavior and its effects on tensile properties of FeCoNiCr high-entropy alloys[J]. Intermetallics, 2016, 79: 41-52. [49]Kim S H, Kim H, Kim N J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility[J]. Nature, 2015, 518(7537): 77-79. [50]孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1高熵合金强韧化机制[J]. 金属学报, 2022, 58(1): 54-66. Sun Shijie, Tian Yanzhong, Zhang Zhefeng. Strengthening and toughening mechanisms of precipitation hardened Fe53Mn15Ni15Cr10Al4Ti2C1 high-entropy alloy[J]. Acta Metallurgica Sinica, 2022, 58(1): 54-66. [51]秦明杰. 一种亚稳型铁基高熵合金的开发及力学性能研究[D]. 太原: 太原理工大学, 2021. Qin Mingjie. Development of a metastable Fe-based high-entropy alloy and study on its mechanical properties[D]. Taiyuan: Taiyuan University of Technology, 2021. |