[1]邹才能, 熊 波, 薛华庆, 等. 新能源在碳中和中的地位与作用[J]. 石油勘探与开发, 2021, 48(2): 411-420. Zou Caineng, Xiong Bo, Xue Huaqing, et al. The role of new energy in carbon neutral[J]. Petroleum Exploration and Development, 2021, 48(2): 411-420. [2]满 锐, 陈 妍, 查松妍, 等. 国内外海洋平台洁净钢研究现状及发展趋势[J]. 中国钢铁业, 2023(2): 51-56. [3]Zhang H, Sun M, Liu Y, et al. Ultrafine-grained dual-phase maraging steel with high strength and excellent cryogenic toughness[J]. Acta Materialia, 2021, 211: 116878. [4]Wei X, Cao X, Luan J H, et al. Synergy of strengthening and toughening of a Cu-rich precipitate-strengthened steel[J]. Materials Science and Engineering A, 2022, 832: 142487. [5]Tervo H, Kaijalainen A, Pallaspuro S, et al. Low-temperature toughness properties of 500 MPa offshore steels and their simulated coarse-grained heat-affected zones[J]. Materials Science and Engineering A, 2020, 773: 138719. [6]徐 振, 王弘江, 李 凯, 等. 超高强海工钢研发生产现状与发展趋势[J]. 辽宁科技大学学报, 2020, 43(4): 264-267. Xu Zhen, Wang Hongjiang, Li Kai, et al. Production status and development trend of ultra-high strength marine steels[J]. Journal of University of Science and Technology Liaoning, 2020, 43(4): 264-267. [7]Zhao N, Zhao Q, He Y, et al. Strengthening-toughening mechanism of cost-saving marine steel plate with 1000 MPa yield strength[J]. Materials Science and Engineering A, 2022, 831: 142280. [8]王占花, 惠卫军, 谢志奇, 等. 回火对钒钛微合金化Mn-Cr系贝氏体型非调质钢组织和性能的影响[J]. 金属学报, 2020, 56(11): 1441-1451. Wang Zhanhua, Hui Weijun, Xie Zhiqi, et al. Effects of tempering temperature on microstructure and mechanical properties of a Mn-Cr type bainitic forging steel[J]. Acta Metallurgica Sinica, 2020, 56(11): 1441-1451. [9]张 鹏, 严 玲, 周 成, 等. 淬火工艺对大厚度690 MPa级海工钢板组织性能的影响[J]. 金属热处理, 2028, 43(10): 107-110. Zhang Peng, Yan Ling, Zhou Cheng, et al. Effect of quenching process on microstructure and properties of heavy thickness 690 grade marine engineering steel plate[J]. Heat Treatment of Metals, 2028, 43(10): 107-110. [10]Zhang C, Wang Q, Ren J, et al. Effect of martensitic morphology on mechanical properties of an as-quenched and tempered 25CrMo48V steel[J]. Materials Science and Engineering A, 2012, 534: 339-346. [11]麻亚鑫, 贾 潇, 杨宇龙, 等. 回火温度对500 MPa级海工钢组织性能的影响[J]. 钢铁研究学报, 2022, 34(12): 1465-1475. Ma Yaxin, Jia Xiao, Yang Yulong, et al. Effect of tempering temperature on microstructure and properties of 500 MPa grade offshore engineering steel[J]. Journal of Iron and Steel Research, 2022, 34(12): 1465-1475. [12]Zhao Y, Tong X, Wei X H, et al. Effects of microstructure on crack resistance and low-temperature toughness of ultra-low carbon high strength steel[J]. International Journal of Plasticity, 2019, 116: 203-215. [13]Mao G, Cayron C, Cao R, et al. The relationship between low-temperature toughness and secondary crack in low-carbon bainitic weld metals[J]. Materials Characterization, 2018, 145: 516-526. [14]相里海龙, 李珊珊, 沈俊昶, 等. 亚结构组织对调质型9NiCrMo钢韧性的影响[J]. 金属热处理, 2015, 40(12): 6-10. Xiangli Hailong, Li Shanshan, Shen Junchang, et al. Effect of substructure on toughness of quenched and tempered 9NiCrMo steel[J]. Heat Treatment of Metals, 2015, 40(12): 6-10. [15]朱雯婷, 崔君军, 陈振业, 等. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352. Zhu Wenting, Cui Junjun, Chen Zhenye, et al. Design and performance of 690 MPa grade low-carbon microalloyed construction structural steel with high strength and toughness[J]. Acta Metallurgica Sinica, 2021, 57(3): 340-352. [16]Ren J, Li C, Han Y, et al. Effect of initial martensite and tempered carbide on mechanical properties of 3Cr2MnNiMo mold steel[J]. Materials Science and Engineering A, 2021, 812: 141080. [17]姜 薇, 徐学军, 李亚智. 微孔贯通机制的韧性多裂纹扩展研究[J]. 火箭推进, 2019, 45(3): 33-40. Jiang Wei, Xu Xuejun, Li Yazhi. Study on ductile multiple-crack extension by microvoid coalescence mechanism[J]. Journal of Rocket Propulsion, 2019, 45(3): 33-40. [18]蒋中华, 杜军毅, 王 培, 等. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902. Jiang Zhonghua, Du Junyi, Wang Pei, et al. Mechanism of improving the impact toughness of SA508-3 steel used for nuclear power by pre-transformation of M-A islands[J]. Acta Metallurgica Sinica, 2021, 57(7): 891-902. [19]蒋金星, 唐 荻, 武会宾, 等. E550海洋平台用钢二次裂纹扩展机理研究[J]. 材料工程, 2013, 6(5): 35-39. Jiang Jinxing, Tang Di, Wu Huibin, et al. Analysis of propagation behavior of secondary cracks in the E550 offshore platform steel[J]. Journal of Materials Engineering, 2013, 6(5): 35-39. [20]雷家峰, 刘羽寅, 杨 锐, 等. 一种亚稳β钛合金中疲劳短裂纹穿晶扩展晶体学特征的EBSD研究[J]. 金属学报, 2002, 38: 272-276. Lei Jiafeng, Liu Yuyin, Yang Rui, et al. EBSD study on the crystallographic characteristics of fatigue crack propagation through a grain boundary in a metastable beta titanium alloy[J]. Acta Metallurgica Sinica, 2002, 38: 272-276. |