[1]Wang B, Zhang Z Y, Xu G C, et al. Wrought and cast aluminum flows in China in the context of electric vehicle diffusion and automotive lightweighting[J]. Resources, Conservation and Recycling, 2023, 191: 106877. [2]Wang X Q, Yuan L Y, Xiao G, et al. A high-accuracy dynamic constitutive relation of die-cast AlSi aluminium alloy[J]. International Journal of Mechanical Sciences, 2023, 251: 108304. [3]方坤鹏, 翟 华, 吴玉程, 等. 新能源汽车一体化铝合金压铸结构件成形工艺关键技术[J]. 中国铸造装备与技术, 2023, 58(3): 33-39. Fang Kunpeng, Zhai Hua, Wu Yucheng, et al. Key technologies for forming process of integrated aluminum alloy die-casting structural components for new energy vehicles[J]. China Foundry Machinery and Technology, 2023, 58(3): 33-39. [4]Zheng Y Y, Luo B H, Xie W, et al. Microstructure evolution and precipitation behavior of Al-Mg-Si alloy during initial aging[J]. China Foundry, 2023, 20(1): 57-62. [5]李先洲. 铝合金一体化压铸技术浅析[J]. 铸造, 2023, 72(4): 462-465. Li Xianzhou. Brief analysis on integrated die casting technology of aluminum alloy[J]. Foundry, 2023, 72(4): 462-465. [6]梁 广, 朱 胜, 王文宇, 等. 铝合金腐蚀防护技术研究现状及发展趋势[J]. 材料导报, 2020, 34(S2): 1429-1436. Liang Guang, Zhu Sheng, Wang Wenyu, et al. Research status and development trend of aluminum alloy anticorrosion technology[J]. Materials Reports, 2020, 34(S2): 1429-1436. [7]Kumar A, Mehtani H K, Shrivastava A, et al. Failure mechanism during incremental sheet forming of a commercial purity aluminum alloy[J]. Engineering Failure Analysis, 2023, 146: 107090. [8]Zhan X, Wang Z, Li M, et al. Investigations on failure-to-fracture mechanism and prediction of forming limit for aluminum alloy incremental forming process[J]. Journal of Materials Processing Technology, 2020, 282: 116687. [9]Wu D Y, Miao C, Dimarco C S, et al. Microstructural effects on the spall failure of 7085 aluminum alloy[J]. Materials Science and Engineering A, 2023, 866: 144674. [10]孔佑顺, 李 飞, 司金梅, 等. 熔模铸造铝合金结构件断裂失效分析[J]. 特种铸造及有色合金, 2020, 40(10): 1113-1117. Kong Youshun, Li Fei, Si Jinmei, et al. Fracture failure analysis of investment casting aluminum alloy castings[J]. Special Casting and Nonferrous Alloys, 2020, 40(10): 1113-1117. [11]Xu M, Yin Y, Li C, et al. A comparative study on Sn macrosegregation behavior of ternary Al-Sn-Cu alloys prepared by gravity casting and squeeze casting[J]. China Foundry, 2023, 20(1): 63-70. [12]樊振中, 袁文全, 王端志, 等. 压铸铝合金研究现状与未来发展趋势[J]. 铸造, 2020, 69(2): 159-166. Fan Zhenzhong, Yuan Wenquan, Wang Duanzhi, et al. Research status and future development trend of die casting aluminum alloys[J]. Foundry, 2020, 69(2): 159-166. [13]Niu Z C, Liu G Y, Li T, et al. Effect of high pressure die casting on the castability, defects and mechanical properties of aluminium alloys in extra-large thin-wall castings[J]. Journal of Materials Processing Technology, 2022, 303: 117525. [14]Li C, Wei H, Ruan S, et al. Effects of aging treatment processes on microstructures and mechanical properties of AZ63 casting magnesium alloy[J]. China Foundry, 2023, 20(4): 307-314. [15]Gong B S, Zhang Z J, Hou J P, et al. Effect of aging state on corrosion fatigue properties of 7075 aluminum alloy[J]. International Journal of Fatigue, 2022, 161: 106916. [16]He B, Cao L F, Wu X D, et al. Effect of continuous retrogression and re-ageing treatment on mechanical properties, corrosion behavior and microstructure of an Al-Zn-Mg-Cu alloy[J]. Journal of Alloys and Compounds, 2024, 970: 172592. [17]余 聪, 陈乐平, 江鸿翔, 等. 深冷-时效复合处理对7075铝合金的显微组织和力学性能的影响[J]. 材料研究学报, 2023, 37(2): 120-128. Yu Cong, Chen Leping, Jiang Hongxiang, et al. Effect of deep cryogenic-aging treatment on microstructure and mechanical properties of 7075 Al-alloy[J]. Chinese Journal of Materials Research, 2023, 37(2): 120-128. [18]刘晓红, 王红阳, 刘黎明. 焊后热处理对6061-T6铝合金激光-电弧复合焊接性能的影响[J]. 焊接技术, 2016, 45(5): 26-29. [19]耿楠楠, 徐志锋, 梁 祥. 退火及深冷处理对SLM成形ZL114A合金组织及性能的影响[J]. 特种铸造及有色合金, 2021, 41(2): 189-194. Geng Nannan, Xu Zhifeng, Liang Xiang. Effects of annealing and cryogenic treatment on microstructure and properties of ZL114A alloy formed by SLM technology[J]. Special Casting and Nonferrous Alloys, 2021, 41(2): 189-194. [20]李桂荣, 王宏明, 袁雪婷, 等. 时效深冷循环处理7055铝合金的组织演变规律和性能特征[J]. 稀有金属材料与工程, 2013, 42(S2): 251-254. Li Guirong, Wang Hongming, Yuan Xueting, et al. Structure evolution and properties of 7055 aluminum alloy with cycle cryogenic treatment[J]. Rare Metal Materials and Engineering, 2013, 42(S2): 251-254. [21]Wang Xucheng, Liu Yu, Huang Yuanchun. Improving precipitation in cryogenic rolling 6016 aluminum alloys during aging treatment[J]. Materials, 2023, 16(9): 3336. [22]Tao C, Cheng X N, Li Z Q, et al. Mechanism of cryogenic, solid solution and aging compound heat treatment of die-cast Al alloys considering microstructure variation[J]. Rare Metals, 2023, 42(9): 3130-3138. [23]Yao E, Zhang H, Ma K, et al. Effect of deep cryogenic treatment on microstructures and performances of aluminum alloys: A review[J]. Journal of Materials Research and Technology, 2023, 26: 3661-3675. [24]Magarajan U, Kumar S S, Rodríguez-Millán M. Effect of deep cryogenic treatment on the microstructural, mechanical and ballistic properties of AA7075-T6 aluminum alloy[J]. Defence Technology, 2023, 26: 3661-3675 [25]江崇远, 王长雨, 罗开玉, 等. 激光冲击层数和氯离子浓度对AM50镁合金耐腐蚀性能的影响[J]. 中国激光, 2018, 45(9): 232-240. Jiang Chongyuan, Wang Changyu, Luo Kaiyu, et al. Effects of laser shock layer number and Cl-concentration on anticorrosion behaviors of AM50 Mg alloys[J]. Chinese Journal of Lasers, 2018, 45(9): 232-240. [26]Zhang S, Luo X, Zheng G Y, et al. Evolutions of microstructure and mechanical properties of cryorolled 7085Al alloy after annealing treatments[J]. JOM, 2023, 75(7): 2462-2472. [27]Zhang H, Yu S Q, Yang Z X, et al. The influence of porosity and precipitates on the corrosion behavior of A356 aluminum alloy[J]. Journal of Electroanalytical Chemistry, 2023, 948: 117796. [28]Zhang D Q, Yan Z X, Gao L X, et al. Corrosion behavior of AA5052 aluminum alloy in the presence of heavy metal ions in 3.5%NaCl solution under negative pressure[J]. Desalination, 2024, 570: 117082. |