[1]刘姣姣. 不同能源类型发电利用状况评价及政策研究[D]. 北京: 华北电力大学, 2015. Liu Jiaojiao. Evaluation and policy research on power generation utilization of different energy types[D]. Beijing: North China Electric Power University, 2015. [2]史进渊, 阳 虹, 张宏涛, 等. 我国汽轮机产品的新进展与发展方向[J]. 动力工程学报, 2021, 41(7): 542-550. Shi Jinyuan, Yang Hong, Zhang Hongtao, et al. New progress and development direction of steam turbines in China[J]. Journal of Chinese Society of Power Engineering, 2021, 41(7): 542-550. [3]惠坤龙, 朱凯丽, 张 咪, 等. 高超超临界汽轮机节能降耗效能浅析[J]. 科技风, 2018(1): 142. [4]王建录, 张晓东. 超超临界二次再热汽轮机发展综述[J]. 东方汽轮机, 2016(1): 1-6, 14. Wang Jianlu, Zhang Xiaodong. Development of ultra-supercritical double-reheat steam turbine[J]. Dongfang Turbine, 2016(1): 1-6, 14. [5]朱宝田, 赵 毅. 我国超超临界燃煤发电技术的发展[J]. 华电技术, 2008, 30(2): 1-5. Zhu Baotian, Zhao Yi. Development of ultra-supercritical power generation technology in China[J]. Huadian Technology, 2008, 30(2): 1-5. [6]张 斌, 胡正飞. 9Cr马氏体耐热钢发展及其蠕变寿命预测[J]. 钢铁研究学报, 2010, 22(1): 26-31. Zhang Bin, Hu Zhengfei. Development and life assessment of 9Cr martensitic heat-resistant steel[J]. Journal of Iron and Steel Research, 2010, 22(1): 26-31. [7]Wang S, Kistanov A A, King G, et al. In-situ quantification and density functional theory elucidation of phase transformation in carbon steel during quenching and partitioning[J]. Acta Materialia, 2023, 221: 117361. [8]Hutchinson B, Hagström J, Karlsson O, et al. Microstructures and hardness of as-quenched martensites(0.1-0.5%C)[J]. Acta Materialia, 2011, 59(14): 5845-5858. [9]Danielsen H K, Hald J. A thermodynamic model of the Z-phase Cr(V, Nb)N[J]. Calphad, 2007, 31(4): 505-514. [10]Zhang M, Qu K L, Luo S X, et al. Effect of Cr on the microstructure and properties of TiC-TiB2 particles reinforced Fe-based composite coatings[J]. Surface and Coatings Technology, 2017, 316: 131-137. [11]Wei B, Liu Z M, Cao B, et al. Cracking inhibition of nano-TiC reinforced René 104 superalloy fabricated by selective laser melting[J]. Journal of Alloys and Compounds, 2021, 881: 160413. [12]Wang Q, Zhao Z Y, Bai P K, et al. Effects of alloying elements X(Cr, Mn, Mo, Ni, Si) on the interface stability of TiC(001)/γ-Fe(001) in TiC/316L stainless steel composite formed by selective laser melting: First principles and experiments[J]. Advanced Composites and Hybrid Materials, 2021, 4: 195-204. [13]Abe F, Murata M, Miyazaki H. Effect of TiC and NbC carbides on creep life of stainless steels[J]. Materials at High Temperatures, 2019, 36(1): 35-47. [14]Chen T C, Ji C, Zhu M Y. Effect of cooling rate on the nucleation and growth of large TiC particles in Ti-Mo steel[J]. Journal of Alloys and Compounds, 2020, 823: 153650. [15]Zhou Y F, Li L L, Hu T S, et al. Role of TiC nanocrystalline and interface of TiC and amorphous carbon on corrosion mechanism of titanium doped diamondlike carbon films: Exploration by experimental and first principle calculation[J]. Applied Surface Science, 2021, 542: 148740. [16]Xu Y, Wu Q L, Zheng H T, et al. Effect of TiC particles on the oxidation behavior of 2Cr13 stainless steel in a simulated marine environment at 550 ℃[J]. Materials and Corrosion, 2020, 71: 1321-1329. [17]Xu G P, Wang K, Li H N, et al. In situ nanoparticle-induced anti-oxidation mechanisms: Application to FeCrB alloys[J]. Corrosion Science, 2021, 190: 109656. [18]李云婷, 董治中, 陈席国, 等. 9%~12%Cr耐热钢汽轮机缸体材料设计理念[J]. 一重技术, 2015(1): 42-46. Li Yunting, Dong Zhizhong, Chen Xiguo, et al. Design concept for steam turbine casing material: 9%-12%Cr heat resistant steel[J]. CFHI Technology, 2015(1): 42-46. |