金属热处理 ›› 2025, Vol. 50 ›› Issue (1): 243-249.DOI: 10.13251/j.issn.0254-6051.2025.01.038

• 数值模拟 • 上一篇    下一篇

2195铝锂合金半球壳对流换热系数数值计算及淬火模拟

宋科锦1, 杜玥2, 付雪松1, 康黎2, 杜宝宪2, 周文龙1   

  1. 1.大连理工大学 材料科学与工程学院, 辽宁 大连 116081;
    2.北京航天材料及工艺研究所, 北京 100076
  • 收稿日期:2024-07-15 修回日期:2024-10-28 出版日期:2025-01-25 发布日期:2025-03-12
  • 通讯作者: 周文龙,教授,博士,E-mail:wlzhou@dlut.edu.cn
  • 作者简介:宋科锦(2000—),男,硕士研究生,主要研究方向为铝锂合金材料,E-mail:kjsong2000@163.com。

Numerical calculation of convective heat transfer coefficient and quenching simulation of 2195 Al-Li alloy hemispherical shell

Song Kejin1, Du Yue2, Fu Xuesong1, Kang Li2, Du Baoxian2, Zhou Wenlong1   

  1. 1. School of Materials and Engineering, Dalian University of Technology, Dalian Liaoning 116081, China;
    2. Beijing Aerospace Materials and Technology Research Institute, Beijing 100076, China
  • Received:2024-07-15 Revised:2024-10-28 Online:2025-01-25 Published:2025-03-12

摘要: 采用分析法和数值法相结合的方法,对2195铝锂合金半球壳的对流换热系数近似计算,分析空冷和水冷情况下对流换热系数随温度的变化规律。用ABAQUS有限元模拟软件,通过构建热力耦合模型,采用有限元方法对ø200 mm和ø100 mm的2195铝锂合金半球壳淬火过程进行模拟,分析淬火过程中的应力应变规律。结果表明,水冷过程中,铝锂合金半球壳的换热系数随工件表面温度由低到高,呈先增后降的趋势,并且峰值点出现在175 ℃左右;空冷过程中,对流换热系数随工件温度的升高而增大。淬火过程模拟结果表明,在半球壳口部产生应力集中现象,塑性应变主要发生在半球壳口部表面处,并且不同尺寸半球壳不同入水温度冷却后的应力、应变分布规律相似。

关键词: 对流换热系数, 2195铝锂合金, 热力耦合, 有限元模拟, 淬火

Abstract: By combining analytical and numerical methods, the convective heat transfer coefficient of 2195 aluminum lithium alloy hemispherical shell was approximately calculated, and the variation law of convective heat transfer coefficient with temperature under air cooling and water cooling conditions was analyzed. Using ABAQUS finite element simulation software, a thermo-mechanical coupling model was constructed, and the quenching process of the 2195 aluminum lithium alloy hemispherical shells with diameters of ø200 mm and ø100 mm was simulated by finite element method, and the stress and strain laws during the quenching process were analyzed. The results show that during the water cooling process, the heat transfer coefficient of the aluminum lithium alloy hemispherical shell increases first and then decreases with the surface temperature of the workpiece from low to high, and the peak point appears at around 175 ℃. During the air cooling process, the convective heat transfer coefficient increases with the increase of workpiece temperature. The simulation results of the quenching process indicate that stress concentration occurs at the mouth of the hemispherical shell, and plastic strain mainly occurs at the surface of the hemispherical shell mouth. The stress and strain distribution patterns of hemispherical shells with different sizes after cooling at different inlet water temperatures are similar.

Key words: convective heat transfer coefficient, 2195 aluminum lithium alloy, thermo-mechanical coupling, finite element simulation, quenching

中图分类号: