[1]Azzeddine H, Bourezg Y I, Khereddine A Y, et al. An investigation of the stored energy and thermal stability in a Cu-Ni-Si alloy processed by high-pressure torsion[J]. Philosophical Magazine, 2020, 100(6): 688-712. [2]Kale A S, Nemeth W, Perkins C L, et al. Thermal stability of copper-nickel and copper-nickel silicide contacts for crystalline silicon[J]. ACS Applied Energy Materials, 2018, 1(6): 2841-2848. [3]Zhao Z, Zhang Y, Tian B H, et al. Co effects on Cu-Ni-Si alloys microstructure and physical properties[J]. Journal of Alloys and Compounds, 2019, 797: 1327-1337. [4]Liu F, Li J, Peng L J, et al. Simultaneously enhanced hardness and electrical conductivity in a Cu-Ni-Si alloy by addition of cobalt[J]. Journal of Alloys and Compounds, 2021, 862: 158667. [5]Liu F, Ma J M, Peng L J, et al. Hot deformation behavior and microstructure evolution of Cu-Ni-Co-Si alloys[J]. Materials, 2020, 13(9): 2042. [6]Wei H, Chen Y L, Li Z L, et al. Microstructure evolution and dislocation strengthening mechanism of Cu-Ni-Co-Si alloy[J]. Materials Science and Engineering A, 2021, 826: 142023. [7]Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning: Generative models for matter engineering[J]. Science, 2018, 361: 360-365. [8]Himanen L, Geurts A, Foster A S, et al. Data-driven materials science: Status, challenges, and perspectives[J]. Advanced Science, 2019, 6(21): 1900808. [9]Butler K T, Davies D W, Cartwright H, et al. Machine learning for molecular and materials science[J]. Nature, 2018, 559: 547-55. [10]Wen C, Wang C, Zhang Y K, et al. Modeling solid solution strengthening in high entropy alloys using machine learning[J]. Acta Materialia, 2021, 212: 116917. [11]Xiong J, Shi S Q, Zhang T Y. Machine learning of phases and mechanical properties in complex concentrated alloys[J]. Journal of Materials Science and Technology, 2021, 87: 133-142. [12]Zou C X, Li J S, Wang W Y, et al. Integrating data mining and machine learning to discover high-strength ductile titanium alloys[J]. Acta Materialia, 2021, 202: 211-221. [13]Li J, Xie B B, Fang Q H, et al. High-throughput simulation combined machine learning search for optimum elemental composition in medium entropy alloy[J]. Journal of Materials Science and Technology, 2021, 68: 70-75. [14]Verdi C, Karsai F, Liu P T, et al. Thermal transport and phase transitions of zirconia by on-the-fly machine-learned interatomic potentials[J]. NPJ Computational Materials, 2021, 7(1): 156. [15]Ozerdem M S, Kolukisa S. Artificial neural network approach to predict the mechanical properties of Cu-Sn-Pb-Zn-Ni cast alloys[J]. Materials and Design, 2009, 30(3): 764-769. [16]Xie Q, Suvarna M, Li J L, et al. Online prediction of mechanical properties of hot rolled steel plate using machine learning[J]. Materials and Design, 2021, 197: 109201. [17]Deng Z H, Yin H Q, Jiang X, et al. Machine-learning-assisted prediction of the mechanical properties of Cu-Al alloy[J]. International Journal of Minerals Metallurgy and Materials, 2020, 27(3): 362-373. [18]Kwak S, Kim J, Ding H S, et al. Machine learning prediction of the mechanical properties of γ-TiAl alloys produced using random forest regression model[J]. Journal of Materials Research and Technology, 2022, 18: 520-530. [19]Gu H H, Wang R Z, Zhu S P, et al. Machine learning assisted probabilistic creep-fatigue damage assessment[J]. International Journal of Fatigue, 2022, 156: 106677. [20]Wang B X, Zhao W G, Du Y L, et al. Prediction of fatigue stress concentration factor using extreme learning machine[J]. Computational Materials Science, 2016, 125: 136-145. [21]Rovinelli A, Sangid M D, Proudhon H, et al. Using machine learning and a data-driven approach to identify the small fatigue crack driving force in polycrystalline materials[J]. npj Computational Materials, 2018, 4: 35. [22]Agrawal A, Choudhary A. An online tool for predicting fatigue strength of steel alloys based on ensemble data mining[J]. International Journal of Fatigue, 2018, 113: 389-400. [23]Xiong J, Shi S Q, Zhang T Y. A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys[J]. Materials & Design, 2020, 187: 108378. [24]Muhammad W, Brahme A P, Ibragimova O, et al. A machine learning framework to predict local strain distribution and the evolution of plastic anisotropy & fracture in additively manufactured alloys[J]. International Journal of Plasticity, 2021, 136: 102867. [25]Roy A, Babuska T, Krick B, et al. Machine learned feature identification for predicting phase and Young's modulus of low-, medium- and high-entropy alloys[J]. Scripta Materialia, 2020, 185: 152-158. [26]Hoyt R A, Montemore M M, Fampiou I, et al. Machine learning prediction of H adsorption energies on Ag alloys[J]. Journal of Chemical Information and Modeling, 2019, 59(4): 1357-1365. [27]Li X, Li B, Yang Z, et al. A transferable machine-learning scheme from pure metals to alloys for predicting adsorption energies[J]. Journal of Materials Chemistry A, 2022, 10(2): 872-880. [28]Gao C, Yang X Y, Jiang M, et al. Machine learning-enabled band gap prediction of monolayer transition metal chalcogenide alloys[J]. Physical Chemistry Chemical Physics, 2022, 24(7): 4653-4665. [29]Zhao F, Lei C H, Zhao Q K, et al. Predicting the property contour-map and optimum composition of Cu-Co-Si alloys via machine learning[J]. Materials Today Communications, 2022, 30: 103318. [30]Magar R, Farimani A B. Learning from mistakes: Sampling strategies to efficiently train machine learning models for material property prediction[J]. Computational Materials Science, 2023, 224: 112167. [31]Zhao Q K, Yang H Y, Liu J B, et al. Machine learning-assisted discovery of strong and conductive Cu alloys: Data mining from discarded experiments and physical features[J]. Materials and Design, 2021, 197: 109248. [32]Zhang Y, Wen C, Wang C X, et al. Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models[J]. Acta Materialia, 2020, 185: 528-539. [33]Wang C C, Wei X L, Ren D, et al. High-throughput map design of creep life in low-alloy steels by integrating machine learning with a genetic algorithm[J]. Materials and Design, 2022, 213: 110326. [34]Zhang H T, Fu H D, He X Q, et al. Dramatically enhanced combination of ultimate tensile strength and electric conductivity of alloys viamachine learning screening[J]. Acta Materialia, 2020, 200: 803-810. [35]Singh D, Singh B. Investigating the impact of data normalization on classification performance[J]. Applied Soft Computing, 2020, 97: 105524. [36]Fei N, Gao Y, Lu Z, et al. Z-score normalization, hubness, and few-shot learning[C]//2021 IEEE/CVF International Conference on Computer Vision(ICCV). 2021: 142-151. [37]Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines[J]. Machine Learning, 2002, 46(1-3): 389-422. [38]Zhong M, Zeng W, Liu F S, et al. Explanation of the conductivity difference of half-Heusler transparent conductors by ionization energy[J]. Physical Chemistry Chemical Physics, 2021, 23: 9285-9293. [39]Stamminger A, Ziebarth B, Mrovec M, et al. Ionic conductivity and its dependence on structural disorder in halogenated argyrodites Li6PS5X(X=Br, Cl, I)[J]. Chemistry of Materials, 2019, 31: 8673-8678. [40]Giannini S, Carof A, Ellis M, et al. Quantum localization and delocalization of charge carriers in organic semiconducting crystals[J]. Nature Communications, 2019, 10: 3843. [41]Zhang L, Chen H M, Tao X M, et al. Machine learning reveals the importance of the formation enthalpy and atom-size difference in forming phases of high entropy alloys[J]. Materials and Design, 2020, 193: 108835. [42]Roy A, Sreeramagiri P, Babuska T, et al. Lattice distortion as an estimator of solid solution strengthening in high-entropy alloys[J]. Materials Characterization, 2021, 172: 110877. [43]Fang W, Yu H Y, Chang R B, et al. Microstructure and mechanical properties of Cr-rich Co-Cr-Fe-Ni high entropy alloys designed by valence electron concentration[J]. Materials Chemistry and Physics, 2019, 238: 121897. [44]Hu Y L, Bai L H, Tong Y G, et al. First-principle calculation investigation of NbMoTaW based refractory high entropy alloys[J]. Journal of Alloys and Compounds, 2020, 827: 153963. [45]Ulrich A S, Pfizenmaier P, Solimani A, et al. Strengthened Cr-Si-base alloys for high temperature applications[J]. International Journal of Refractory Metals & Hard Materials, 2018, 76: 72-81. [46]Zhang Y, Chen X, Jayalakshmi S, et al. Factors determining solid solution phase formation and stability in CoCrFeNiX0.4(X=Al, Nb, Ta) high entropy alloys fabricated by powder plasma arc additive manufacturing[J]. Journal of Alloys and Compounds, 2020, 857: 157625. |