[1] 杭子迪. 高Ti微合金热轧高强钢组织与性能研究[D]. 唐山: 华北理工大学, 2019. [2] Lee S J, Lee Y K. Prediction of austenite grain growth during austenitization of low alloy steels[J]. Materials and Design, 2008, 29(9): 1840-1844. [3] 李峥杰, 张 玮, 刘小军. 钛含量对汽车用贝氏体-马氏体双相钢抗氢脆行为的影响[J]. 钢铁钒钛, 2023, 44(3): 171-176. Li Zhengjie, Zhang Wei, Liu Xiaojun. Effect of titanium content on hydrogen embrittlement behavior of bainite/martensite dual-phase steel[J]. Iron Steel Vanadium Titanium, 2023, 44(3): 171-176. [4] 李立铭. 高Ti微合金化钢中第二相的固溶析出行为与组织性能研究[D]. 唐山: 华北理工大学, 2019. [5] 毛新平. 薄板坯连铸连轧流程钛微合金钢控制轧制技术[J]. 钢铁, 2016, 51(1): 52-59. Mao Xinping. Control rolling technology of Ti-microalloyed strip produced by TSCR[J]. Iron and Steel, 2016, 51(1): 52-59. [6] 吕志伟. 钛微合金钢中纳米碳化物等温析出及其强化效果研究[D]. 镇江: 江苏大学, 2021. [7] 雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006. [8] 张 可. Ti-V-Mo复合微合金化高强度钢组织调控与强化机理研究[D]. 昆明: 昆明理工大学, 2016. [9] 杨 博, 曹 睿, 闫英杰, 等. 终轧温度对S35VN钢组织与性能的影响[J]. 金属热处理, 2020, 45(11): 99-105. Yang Bo, Cao Rui, Yan Yingjie, et al. Effect of final rolling temperature on microstructure and mechanical properties of S35VN steel[J]. Heat Treatment of Metals, 2020, 45(11): 99-105. [10] 夏继年. 钛微合金钢中纳米碳化钛的析出控制研究[D]. 镇江: 江苏大学, 2018. [11] 陈嘉衡. AH36高强船板钢强化机理及热处理组织调控的探究[D]. 鞍山: 辽宁科技大学, 2023. [12] 王振强. Ti微合金钢中的析出行为与合金元素Mn和Mo的影响[D]. 北京: 清华大学, 2013. [13] 赵运堂, 尚成嘉, 贺信莱, 等. 低碳Mo-Cu-Nb-B系微合金钢的中温转变组织类型[J]. 金属学报, 2006, 42(1): 54-58. Zhao Yuntang, Shang Chengjia, He Xinlai, et al. Intermediate transformation structures in a low carbon Mo-Cu-Nb-B microalloying steel[J]. Acta Metallurgica Sinica, 2026, 42(1): 54-58. [14] 雍岐龙, 郑 鲁. 微合金化钢中NbC在铁素体中的沉淀和沉淀强化[J]. 金属学报, 1984(1): 14-21. [15] 李昭东. 变形和合金元素对钢中奥氏体组织形成和分解相变的影响[D]. 北京: 清华大学, 2011. [16] 雷 扬, 李 壮, 王 帅, 等. TRIP钢控轧控冷参数对组织和性能的影响[J]. 金属热处理, 2018, 43(12): 115-120. Lei Yang, Li Zhuang, Wang Shuai, et al. Effects of controlled rolling and cooling processing parameters on microstructure and properties of TRIP steel[J]. Heat Treatment of Metals, 2018, 43(12): 115-120. [17] Adrian H. Thermodynamic model for precipitation of carbonitrides in high strength low alloy steels containing up to three microalloying elements with or without additions of aluminium[J]. Materials Science and Technology, 1992, 8: 406-420. [18] Rios P R. Method for the determination of mole fraction and composition of a multicomponent f.c.c. carbonitride[J]. Materials Science and Engineering A, 1991, 142: 87-94. [19] 雍岐龙, 陈明昕, 裴和中, 等. 微合金碳氮化物在铁素体中沉淀析出的PTT曲线的理论计算[J]. 钢铁研究学报, 2006, 18(3): 30-32, 25. Yong Qilong, Chen Mingxin, Pei Hezhong, et al. Theoretical calculation for PTT curve of microalloy carbonitride precipitated in ferrite[J]. Journal of Iron Steel Research, 2006, 18(3): 30-32, 25.[20] Merwe J H V D, Woltersdorf J, Jesser W A. Low energy dislocation structures in epitaxy[J]. Materials Science & Engineering, 1986, 81: 1-33. [21] Altuna M A, Iza-Mendia A, Gutiérrez I. Precipitation of Nb in ferrite after austenite conditioning. Part II: strengthening contribution in high-strength low-alloy (HSLA) steels[J]. Metallurgical & Materials Transactions A, 2012, 43(12): 4571-4586. [22] Wiskel J B, Ivey D G, Henein H. The effects of finish rolling temperature and cooling interrupt conditions on precipitation in microalloyed steels using small angle neutron scattering[J]. Metallurgical and Materials Transactions B, 2008, 39(1): 116-124. [23] Kim Y W, Song S W, Seo S J, et al. Development of Ti and Mo micro-alloyed hot-rolled high strength sheet steel by controlling thermomechanical controlled processing schedule[J]. Materials Science and Engineering A, 2013, 565: 430-438. [24] Taylor K A. Solubility products for titanium-, vanadium-, and niobium-carbide in ferrite[J]. Scripta Metallurgica et Materialia, 1995, 32(1): 7-12. [25] Luo H, Greene R G, Ghandehari K, et al. Structural phase transformations and the equations of state of calcium chalcogenides at high pressure[J]. Physical Review B Condensed Matter, 1994, 50(22): 16232-16237. |