[1]高惠临, 张骁勇. 大变形管线钢的研究和开发[J]. 焊管, 2014, 37(4): 14-21. Gao Huilin, Zhang Xiaoyong. Research and development of large deformability pipeline steels[J]. Welded Pipe and Tube, 2014, 37(4): 14-21. [2]张鹤松, 康永林, 孟德亮, 等. X80抗大变形管线钢的生产工艺与组织性能研究[J]. 中国冶金, 2012, 22(9): 10-14. Zhang Hesong, Kang Yonglin, Meng Deliang, et al. Research on processing, microstructure and properties of X80 high-deformability pipeline steel[J]. China Metallurgy, 2012, 22(9): 10-14. [3]陈 凯, 晏利君, 刘 宇, 等. X70大变形管线钢管的组织和性能[J]. 机械工程材料, 2013, 37(9): 21-24. Chen Kai, Yan Lijun, Liu Yu, et al. Microstructure and properties of X70 high deformability linepipe[J]. Materials for Mechanical Engineering, 2013, 37(9): 21-24. [4]赵鹏翔, 左秀荣, 陈 康, 等. X80大变形管线钢的腐蚀行为[J]. 材料热处理学报, 2013, 34(S2): 221-226. Zhao Pengxiang, Zuo Xiurong, Chen Kang, et al. Corrosion behavior of X80 pipeline steel with strain-based design[J]. Transactions of Materials and Heat Treatment, 2013, 34(S2): 221-226. [5]Liu Ligang, Xiao Hong, Li Qiang, et al. Evaluation of the fracture toughness of X70 pipeline steel with ferrite-bainite microstructure[J]. Materials Science and Engineering A, 2017, 688: 388-395. [6]刘文月, 任 毅, 高 红, 等. F-B型大变形管线钢的研究进展及发展方向[J]. 宽厚板, 2016, 22(5): 25-28. Liu Wenyue, Reng Yi, Gao Hong, et al. Research progress and development trend of F-B type high deformability pipeline steel[J]. Wide and Heavy Plate, 2016, 22(5): 25-28. [7]张 丹, 刘雅政, 周乐育, 等. 分段冷却工艺对微合金铁素体-贝氏体双相钢组织和性能的影响[J]. 机械工程材料, 2012, 36(11): 50-53. Zhang Dan, Liu Yazheng, Zhou Leyu, et al. Effect of step-cooling process on structures and properties of microalloy ferrite-bainite dual-phase steels[J]. Materials for Mechanical Engineering, 2012, 36(11): 50-53. [8]孟德亮, 康永林, 郑晓飞, 等. 两阶段控制冷却工艺对含钼X80抗大变形管线钢组织与性能的影响[J]. 北京科技大学学报, 2011, 33(7): 834-840. Meng Deliang, Kang Yonglin, Zheng Xiaofei, et al. Effect of two-stage controlled cooling on the microstructure and properties of Mo-containing X80 high-deformability pipeline steel[J]. Journal of University of Science and Technology Beijing, 2011, 33(7): 834-840. [9]马 晶, 张骁勇, 程时遐, 等. 基于临界区加速冷却的(B+F)X80大变形管线钢的组织和性能研究[J]. 材料导报, 2014, 28(2): 118-122. Ma Jing, Zhang Xiaoyong, Chen Shixia, et al. Study on microstructure and properties of (B+F) X80 large deformation pipeline steel after critical zone accelerated cooling[J]. Materials Review, 2014, 28(2): 118-122. [10]樊学华, 李向阳, 董 磊, 等. 国内抗大变形管线钢研究及应用进展[J]. 油气储运, 2015, 34(3): 237-243. Fan Xuehua, Li Xiangyang, Dong Lei, et al. Progress in research and application of pipeline steels with high deformation resistance in China[J]. Oil and Gas Storage and Transportation, 2015, 34(3): 237-243. [11]姚梦佳, 李春福, 肖 淇, 等. 不同马氏体含量的F/M双相钢组织及形变行为[J]. 金属热处理, 2015, 40(8): 49-54. Yao Mengjia, Li Chunfu, Xiao Qi, et al. Microstructure and deformation behavior of F/M dual phase steel with different content of martensite[J]. Heat Treatment of Metals, 2015, 40(8): 49-54. [12]Ishikawa N, Yasuda K, Sueyoshi H, et al. Microscopic deformation and strain hardening analysis of ferrite-bainite dual-phase steels using micro-grid method[J]. Acta Materialia, 2015, 97: 257-268. [13]于庆波, 孙 莹, 倪宏昕, 等. 不同类型的贝氏体组织对低碳钢力学性能的影响[J]. 机械工程学报, 2009, 45(12): 284-288. Yu Qingbo, Sun Ying, Ni Hongxin, et al. Effect of different bainitic microstructures on the mechanical properties of low-carbon steel[J]. Journal of Mechanical Engineering, 2009, 45(12): 284-288. [14]Wang Y X, Zhao W M, Ai H, et al. Effects of strain on the corrosion behaviour of X80 steel[J]. Corrosion Science, 2011, 53(9): 2761-2766. [15]杨鸿铭. 冷速对低碳钢先共析铁素体生长行为的影响[D]. 锦州: 辽宁工业大学, 2014. [16]Tan Fengliang, Liu Qingyou, Lei Ting, et al. Ferrite evolution during isothermal process in a high deformability pipeline steel[J]. Journal of Iron and Steel Research, International, 2013, 20(7): 89-93. [17]邓 伟, 高秀华, 秦小梅, 等. 冷却速率对变形与未变形X80管线钢组织的影响[J]. 金属学报, 2010, 46(8): 959-966. Deng Wei, Gao Xiuhua, Qing Xiaomei, et al. Effect of cooling rate on microstructure of deformed and undeformed X80 pipeline steels[J]. Acta Metallurgica Sinica, 2010, 46(8): 959-966. |