[1]Cheng J Y, Shen B, Yu F X. Precipitation in a Cu-Cr-Zr-Mg alloy during aging[J]. Materials Characterization, 2013, 81(4): 68-75. [2]蔡 薇, 高鹏哲, 陈辉明, 等. Cu-Cr-Zr-Ti合金高温热变形行为及热加工图[J]. 金属热处理, 2019, 44(8): 164-171. Cai Wei, Gao Pengzhe, Chen Huiming, et al. High temperature deformation behavior and hot processing map of Cu-Cr-Zr-Ti alloy[J]. Heat Treatment of Metals, 2019, 44(8): 164-171. [3]陈金水, 王俊峰, 朱明彪, 等. Cu-Cr-Zr系合金中Zr含量对初生相的影响[J]. 金属热处理, 2018, 43(7): 27-34. Chen Jinshui, Wang Junfeng, Zhu Mingbiao, et al. Effect of Zr content on primary phase in Cu-Cr-Zr system alloys[J]. Heat Treatment of Metals, 2018, 43(7): 27-34. [4]Fu H D, Xu S, Li W, et al. Effect of rolling and aging processes on microstructure and properties of Cu-Cr-Zr alloy[J]. Materials Science and Engineering A, 2017, 700: 107-115. [5]Feng H, Jiang H C, Yan D S, et al. Effect of continuous extrusion on the microstructure and mechanical properties of a CuCrZr alloy[J]. Materials Science and Engineering A, 2013, 582: 219-224. [6]Zhang B, Zhang Z G, Li W, et al. Effects of thermo-mechanical treatment on microstructure and properties of Cu-Cr-Zr alloys[J]. Physics Procedia, 2013, 50: 55-60. [7]Lin G B, Wang Z D, Zhang M K, et al. Heat treatment method for making high strength and conductivity Cu-Cr-Zr alloy[J]. Materials Science and Technology, 2011, 27(5): 966-969. [8]Li H Q, Xie S S, Mi X J, et al. Influence of cerium and yttrium on Cu-Cr-Zr alloys[J]. Journal of Rare Earths, 2006, 24(1): 367-371. [9]Zhang Y, Volinsky A A, Tran H T, et al. Effects of Ce addition on high temperature deformation behavior of Cu-Cr-Zr alloys[J]. Journal of Materials Engineering and Performance, 2015, 24(10): 3783-3788. [10]李克欣. 铜合金接触线低周疲劳性能研究[D]. 大连: 大连交通大学, 2011. Li Kexin. Study on low cycle fatigue properties of copper alloy contact wire[D]. Dalian: Dalian Jiaotong University, 2011. [11]Liu R, Tian Y Z, Zhang Z J, et al. Exploring the fatigue strength improvement of Cu-Al alloys[J]. Acta Materialia, 2018, 144: 613-626. [12]段启强. 粗晶与细晶铜的低周疲劳与压缩性能[D]. 沈阳: 沈阳理工大学, 2005. Duan Qiqiang. Low-Cycle fatigue and compression properties of coarse and fine grained copper[D]. Shenyang: Shenyang University of Science and Technology, 2005. [13]Abdulstaar M A, Mhaede M, Wollmann M, et al. Fatigue behaviour of commercially pure aluminium processed by rotary swaging[J]. Journal of Materials Science, 2014, 49(3): 1138-1143. [14]Vinogradov A, KanekoY, Kitagawa K. On the cyclic response of ultrafine-grained copper[J]. Materials Science Forum, 1998, 269: 987-992. [15]Liu Y F, Wang F, Cang Y, et al. Unique defect evolution during the plastic deformation of a metalmatrix composite[J]. Scripta Materialia, 2019, 162: 316-320. [16]Rao G S, Srinath J, Raman S. Effect of temperature on low cycle fatigue behavior of annealed Cu-Cr-Zr-Ti alloy in argon atmosphere[J]. Materials Science and Engineering A, 2017, 692: 156-167. [17]An X H, Lin Q Y, Wu S D, et al. Improved fatigue strengths of nanocrystalline Cu and Cu-Al alloys[J]. Materials Research Letters 2015, 3(3): 135-141. [18]An X H, Wu S D, Wang Z G, et al. Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu-Al alloys[J]. Acta Materialia, 2014, 74: 200-214. [19]Tomé C N, Agnew S R, Blumenthal W R, et al. The relation between texture, twinning and mechanical properties in hexagonal aggregates[J]. Materials Science Forum, 2003, 408: 263-268. [20]Guo X L, Lu L, Li S X. Dislocation evolution in twins of cyclically deformed copper[J]. Philosophical Magazine Letters, 2005, 85:613-623. |