[1]韩 毅, 陈法国, 于伟跃, 等. 中子屏蔽材料研究现状[J]. 材料导报, 2015, 29(2): 483-488. Han Yi, Chen Faguo, Yu Weiyue, et al. Investigation of the research status of neutron shielding materials[J]. Materials Review, 2015, 29(2): 483-488. [2]Kurban M, Erb U, Aust K T. A grain boundary characterization study of boron segregation and carbide precipitation in alloy 304 austenitic stainless steel[J]. Scripta Materialia, 2006, 54(6): 1053-1058. [3]Bastürk M, Arztmann J, Jerlich W, et al. Analysis of neutron attenuation in boron-alloyed stainless steel with neutron radiography and JEN-3 gauge[J]. Journal of Nuclear Materials, 2005, 341(2): 189-200. [4]Özbek I, Konduk B A, Bindal C, et al. Characterization of borided AISI 316L stainless steel implant[J]. Vacuum, 2002, 65(3): 521-525. [5]Williams T M, Stoneham A M, Harries D R. The segregation of boron to grain boundaries in solution-treated type 316 austenitic stainless steel[J]. Metal Science, 1976, 10(1): 14-19. [6]Khan Z. Influence of gadolinium on the microstructure and mechanical properties of steel and stainless steel[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2012, 112(4): 309-321. [7]Robino C V, Michael J R, DuPont J N, et al. Development of Gd-enriched alloys for spent nuclear fuel applications—part Ⅰ: Preliminary characterization of small scale Gd-enriched stainless steels[J]. Journal of Materials Engineering and Performance, 2003, 12(2): 206-214. [8]DuPont J N, Robino C V, Michael J R, et al. Physical and welding metallurgy of Gd-enriched austenitic alloys for spent nuclear fuel applications—part Ⅰ: Stainless steel alloys[J]. Welding Journal, 2004, 83(11): 289-300. [9]DuPont J N, Robino C V, Stephens Jr J J, et al. Preliminary microstructural characterization of gadolinium-enriched stainless steels for spent nuclear fuel baskets (title change from A)[R]. Sandia National Labs, Albuquerque, NM (US); Sandia National Labs, Livermore, CA (US), 2000. [10]Schmidt M L, Del Corso G J, Klankowski K A, et al. Review of the development and testing of a new family of boron and gadolinium-bearing dual thermal neutron absorbing alloys-13026[C]//United States: N. p., 2013. https://www.osti.gov/biblio/22224834. [11]DuPont J N, Robino C V, Anderson T D. Influence of Gd and B on solidification behaviour and weldability of Ni-Cr-Mo alloy[J]. Science and Technology of Welding and Joining, 2008, 13(6): 550-565. [12]Susan D F, Robino C V, Minicozzi M J, et al. A solidification diagram for Ni-Cr-Mo-Gd alloys estimated by quantitative microstructural characterization and thermal analysis[J]. Metallurgical and Materials Transactions A, 2006, 37(9): 2817-2825. [13]Choi Y, Moon B M, Sohn D S. Fabrication of Gd containing duplex stainless steel sheet for neutron absorbing structural materials[J]. Nuclear Engineering and Technology, 2013, 45(5): 689-694. [14]Lim J, Ahn J H, Moon B M, et al. Influence of gadolinium addition on mechanical and corrosion properties of 2205 duplex stainless steel[J]. Journal of Korea Foundry Society, 2015, 35(6): 163-169. [15]Lim J, Jung H D, Ahn J H, et al. Microstructure and fracture property of 1A grade duplex stainless steel with the addition of gadolinium[J]. Journal of Korea Foundry Society, 2016, 36(1): 24-31. [16]张 阳, 王福明, 唐郑磊, 等. SXQ500/550D钢奥氏体晶粒长大行为及其影响因素[J]. 金属热处理, 2019, 44(8): 110-118. Zhang Yang, Wang Fuming, Tang Zhenglei, et al. Austenite grain growth behavior and its influencing factors of SXQ500/550D steel[J]. Heat Treatment of Metals, 2019, 44(8): 110-118. [17]张迎晖, 谢健明, 刘 欣, 等. 微合金化S355钢的第二相析出行为[J]. 金属热处理, 2018, 43(8): 55-59. Zhang Yinghui, Xie Jianming, Liu Xin, et al. Secondary phase precipitation behavior of microalloyed S355 steel[J]. Heat Treatment of Metals, 2018, 43(8): 55-59. [18]韩世绪, 冯运莉, 白 敏, 等. 含铌取向硅钢第二相沉淀析出相变动力学计算[J]. 金属热处理, 2019, 44(7): 194-197. Han Shixu, Feng Yunli, Bai Min, et al. Dynamics calculations of secondary phase precipitation in Nb-bearing oriented silicon steel[J]. Heat Treatment of Metals, 2019, 44(7): 194-197. [19]武绍文, 张彩军, 郑非凡, 等. EH40钢中第二相粒子对奥氏体尺寸的影响[J]. 金属热处理, 2019, 44(7): 88-92. Wu Shaowen, Zhang Caijun, Zheng Feifan, et al. Effect of second phase particles on austenite grain size in EH40 steel[J]. Heat Treatment of Metals, 2019, 44(7): 88-92. |