[1]郭鹏杰, 张 星, 李保成, 等. AZ80镁合金第二相体积分数对其拉伸性能的影响[J]. 金属热处理, 2019, 44(3): 46-49. Guo Pengjie, Zhang Xing, Li Baocheng, et al. Effect of secondary phase volume fraction on tensile properties of AZ80 magnesium alloy[J]. Heat Treatment of Metals, 2019, 44(3): 46-49. [2]刘 庆. 镁合金塑性变形机理研究进展[J]. 金属学报, 2010, 46(11): 1458-1472. Liu Qing. Research progress on plastic deformation mechanism of Mg alloys[J]. Acta Metallurgica Sinica, 2010, 46(11): 1458-1472. [3]Liu Xiaoye, Lu Liwei, Sheng Kun, et al. Microstructure and texture evolution during the direct extrusion and bending-shear deformation of AZ31 magnesium alloy[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(6): 710-718. [4]Roy S, Nataraj B R, Suwas S, et al. Microstructure and texture evolution during accumulative roll bonding of aluminium alloys AA2219/AA5086 composite laminates[J]. Journal of Materials Science, 2012, 47(17): 6402-6419. [5]Xing Z P, Kang S B, Kim H W. Structure stability of AA3003 alloy with ultra-fine grain size[J]. Journal of Materials Science, 2004, 39(4): 1259-1265. [6]Jha K, Kumar S, Nachiket K, et al. Friction stir welding (FSW) of aged CuCrZr alloy plates[J]. Metallurgical and Materials Transactions A, 2018, 49: 223-234. [7]龚 航, 陈 立, 陈胜迁, 等. 搅拌摩擦加工速度对再生铝合金组织和性能的影响[J]. 塑性工程学报, 2019, 26(2): 324-332. Gong Hang, Chen Li, Chen Shengqian, et al. Effects of friction stir processing speed on microstructure and properties of recycled aluminum alloy[J]. Journal of Plasticity Engineering, 2019, 26(2): 324-332. [8]李天麒, 王快社, 王 文, 等. 焊速对水下搅拌摩擦焊接7A04铝合金组织性能的影响[J]. 材料导报, 2016, 30(22): 109-112. Li Tianqi, Wang Kuaishe, Wang Wen, et al. Effect of welding speed on microstructure and properties of submerged friction stir welded 7A04 alumimum alloy[J]. Materials Review, 2016, 30(22): 109-112. [9]王 文. 搅拌摩擦加工镁合金微观组织与力学性能研究[D]. 西安: 西安建筑科技大学, 2016. Wang Wen. Microstructure and mechanical properties of friction stir processed magnesium alloys[D]. Xi'an: Xi'an University of Architecture and Technology, 2016. [10]Peng Hua, Sergey Mironov, Yutaka S Sato, et al. Crystallography of martensite in friction-stir-welded 12Cr heat-resistant steel[J]. Metallurgical and Materials Transactions A, 2019, 50(7): 3158-3163. [11]Pilchak A L, Juhas M C, Williams J C. Microstructural changes due to friction stir processing of investment-cast Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2007, 38(6): 1376-1376. [12]Zhang Datong, Chai Fang, Li Yuanyuan. High strain rate superplasticity of a fine-grained AZ91 magnesium alloy prepared by friction stir processing[C]// Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing. 2013: 1065-1071. [13]Wang W, Wang K, Guo Q, et al. Effect of friction stir processing on microstructure and mechanical properties of cast AZ31 magnesium alloy[J]. Rare Metal Materials and Engineering, 2012, 41(9): 1522-1526. [14]李念军. 7075铝合金搅拌摩擦加工及热处理后的组织性能表征研究[D]. 重庆: 重庆大学, 2017. Li Nianjun. Characterizations on microstructures and properties of 7075 aluminum alloy after friction stir processing and subsequent heat treatment[D]. Chongqing: Chongqing University, 2017. [15]刘旭贺, 肖 阳, 姚 玮, 等. 退火对冷轧LZ91镁锂合金组织与冲压性能的影响[J]. 金属热处理, 2017, 42(12): 127-130. Liu Xuhe, Xiao Yang, Yao Wei, et al. Effect of annealing on microstructure and stamping property of cold rolled LZ91 Mg-Li alloy[J]. Heat Treatment of Metals, 2017, 42(12): 127-130. [16]郭俊卿, 丁 祎, 陈拂晓, 等. AZ63镁合金累积叠轧界面结合机制的研究[J]. 塑性工程学报, 2018, 25(1): 60-65. Guo Junqing, Ding Yi, Chen Fuxiao, et al. Interfacial bonding mechanism of AZ63 magnesium alloy during accumulative roll-bonding[J]. Journal of Plasticity Engineering, 2018, 25(1): 60-65. [17]李瑞红, 徐浩杰, 廖 钧, 等. 退火温度对轧制态Mg-1Li-3Al-1Zn-0.3(Al5Ti1B)合金组织及力学性能的影响[J]. 金属热处理, 2017, 42(9): 71-75. Li Ruihong, Xu Haojie, Liao Jun, et al. Effect of annealing temperature on microstructure and mechanical properties of rolled Mg-1Li-3Al-1Zn-0.3(Al5Ti1B) alloy[J]. Heat Treatment of Metals, 2017, 42(9): 71-75. |