[1]Lin Y C, Zhang Jinlong, Chen Mingsong. Evolution of precipitates during two-stage stress-aging of an Al-Zn-Mg-Cu alloy[J]. Journal of Alloys and Compounds, 2016, 684: 177-187. [2]Bai Pucun, Hou Xiaohu, Zhang Xiuyun, et al. Microstructure and mechanical properties of a large billet of spray formed Al-Zn-Mg-Cu alloy with high Zn content[J]. Materials Science and Engineering: A, 2009, 508: 23-27. [3]Chen Gang, Chen Wei, Zhang Guowei, et al. Microstructures and mechanical properties of Al-12Zn-2.4Mg-1.2Cu alloy under different deformation ways[J]. Rare Metal Materials and Engineering, 2016, 45(9): 2237-3341. [4]江福清, 黄继武, 刘 赟, 等. 固溶-时效对新型高强高淬透性热挤压Al-Zn-Mg-Cu-Zr 合金组织与性能的影响[J]. 金属热处理, 2019, 44(1): 86-90. Jiang Fuqing, Huang Jiwu, Liu Yun, et al. Effects of solution and aging on microstructure and properties of new high-strength and high-hardenability hot-extruded Al-Zn-Mg-Cu-Zr alloy[J]. Heat Treatment of Metals, 2019, 44(1): 86-90. [5]Wen Kai, Fan Yunqiang, Wang Guojun, et al. Aging behavior and precipitate characterization of a high Zn-containing Al-Zn-Mg-Cu alloy with various tempers[J]. Materials and Design, 2016, 101: 16-23. [6]马思图, 车 欣, 王 莹, 等. 固溶-时效态Al-8Zn-2.5Mg-1.5Cu(-0.15Y)合金的室温和低温拉伸性能[J]. 金属热处理, 2019, 44(2): 167-171. Ma Situ, Che Xin, Wang Ying, et al. Tensile properties at room and low temperatures of solid-solution treated and aged Al-8Zn-2.5Mg-1.5Cu(-0.15Y) alloys[J]. Heat Treatment of Metals, 2019, 44(2): 167-171. [7]张 坤. 合金元素和热处理制度对高Zn超高强铝合金微观组织和力学性能的影响[D]. 长沙: 中南大学, 2003. [8]Schloth P, Deschamps A, Gandin Ch A, et al. Modeling of GP(I) zone formation during quench in an industrial AA7449 75 mm thick plate[J]. Materials and Design, 2016, 112: 46-57. [9]郑山红, 郭巧能, 刘志勇, 等. 双级蠕变时效对含钪7050铝合金力学及耐腐蚀性能的影响[J]. 金属热处理, 2020, 45(1): 193-199. Zheng Shanhong, Guo Qiaoneng, Liu Zhiyong, et al. Effect of two-stage creep-aging on mechanical properties and corrosion resistance of 7050 aluminum alloy containing Sc[J]. Heat Treatment of Metals, 2020, 45(1): 193-199. [10]廖 飞, 范世通, 邓运来, 等. 高强铝合金中间相Al2Cu, Al2CuMg和MgZn2性能的第一性原理计算[J]. 航空材料学报, 2016, 36(6): 1-8. Liao Fei, Fan Shitong, Deng Yunlai, et al. First-principle calculations of mechanical properties of Al2Cu, Al2CuMg and MgZn2 intermetallics in high strength aluminum alloys[J]. Journal of Aeronautical Materials, 2016, 36(6): 1-8. [11]刘 飞, 白朴存, 侯小虎, 等. Al-Zn-Mg-Cu合金时效沉淀相应变场研究[J]. 稀有金属材料与工程, 2012, 41(S2): 520-523. Liu Fei, Bai Pucun, Hou Xiaohu, et al. Investigation of strain field of precipitates in an Al-Zn-Mg-Cu alloy[J]. Rare Metal Materials and Engineering, 2012, 41(S2): 520-523. [12]向剑波, 陈 伟, 熊落保, 等. 7055铝合金的非等温时效工艺[J]. 金属热处理, 2019, 44(1): 190-194. Xiang Jianbo, Chen Wei, Xiong Luobao, et al. Non-isothermal aging of 7055 aluminum alloy[J]. Heat Treatment of Metals, 2019, 44(1): 190-194. [13]Khalfallah A, Raho A A, Amzert S, et al. Precipitation kinetics of GP zones, metastable η′ phase and equilibrium η phase in Al-5.46wt.%Zn-1.67wt.%Mg alloy[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(2): 233-241. [14]张 训, 高智勇, 叶 茂, 等. 7055超高强铝合金的时效工艺[J]. 金属热处理, 2015, 40(10): 181-186. Zhang Xun, Gao Zhiyong, Ye Mao, et al. Aging process of 7055 ultra high strength aluminum alloy[J]. Heat Treatment of Metals, 2015, 40(10): 181-186. [15]陈辉刚. 铝合金低温下力学性能综述[J]. 机械, 2016, 43(S1): 74-77. Chen Huigang. Overview on the mechanical properties of aluminum at low temperatures[J]. Machinery, 2016, 43(S1): 74-77. [16]Ren Jian, Wang Richu, Feng Yan, et al. Microstructure evolution and mechanical properties of an ultrahigh strength Al-Zn-Mg-Cu-Zr-Sc (7055) alloy processed by modified powder hot extrusion with post aging[J]. Vacuum, 2019, 161: 434-442. [17]Zuo Jinrong, Hou Longgang, Shi Jintao, et al. The mechanism of grain refinement and plasticity enhancement by an improved thermomechanical treatment of 7055 Al alloy[J]. Materials Science and Engineering: A, 2017, 702: 42-52. [18]王春华, 杨丽娟, 尹红霞, 等. 时效处理对高锌7075铝合金力学性能的影响[J]. 金属热处理, 2018, 43(12): 148-151. Wang Chunhua, Yang Lijuan, Yin Hongxia, et al. Effect of aging treatment on mechanical properties of 7075 aluminum alloy with high Zn content[J]. Heat Treatment of Metals, 2018, 43(12): 148-151. |