[1]API 5L-2012, Specification for line pipe[S]. [2]孔祥磊, 黄国建, 吴成举, 等. 低硬度L485M管线钢卷材的开发[J]. 上海金属, 2018, 40(6): 24-28.Kong Xianglei, Huang Guojian, Wu Chengju, et al. Development of low-hardness X70M pipeline steel coil[J]. Shanghai Metals, 2018, 40(6): 24-28. [3]宗 毳, 毛卫民, 朱国辉, 等. 晶体学织构与晶粒形状对管线钢屈服强度各向异性的影响[J]. 金属学热处理, 2012, 37(11): 1-5. Zong Cui, Mao Weimin, Zhu Guohui, et al. Effects of crystallographic texture and grain shape on the anisotropy of yield strength of pipeline steel[J]. Heat Treatment of Metals, 2012, 37(11): 1-5. [4]陈 文, 刘清友, 孙新军, 等. 降低管线钢拉伸强度各向异性的热轧工艺[J].钢铁研究学报, 2010, 22(12): 53-57. Chen Wen, Liu Qingyou, Sun Xinjun, et al. Hot rolling technology to reduce tensile strength anisotropy of pipeline steel[J]. Journal of Iron and Steel Research, 2010, 22(12): 53-57. [5]郑茂盛, 李金波, 李海军, 等. X80级管线钢的各向异性特征[J].焊管, 2005, 28(3): 13-16. Zheng Maosheng, Li Jinbo, Li Haijun, et al. Anisotropy characteristic of grade X80 pipeline steel[J]. Welded Pipe and Tube, 2005, 28(3): 13-16. [6]端 强, 阎 军, 朱国辉, 等. 晶粒尺寸与晶界取向差对X80管线钢各向异性的影响[J]. 热加工工艺, 2013, 42(24): 107-109. Duan Qiang, Yan Jun, Zhu Guohui, et al. Effects of grain size and misorientation on anisotropy of X80 pipeline steel[J]. Hot Working Technology, 2013, 42(24): 107-109. [7]张 海, 李少坡, 丁文华, 等. 显微组织与晶体学织构对X80管线钢拉伸强度各向异性的影响[J]. 金属热处理, 2018, 42(2): 68-71. Zhang Hai, Li Shaopo, Ding Wenhua, et al. Effects of microstructure and crystallographic texture on anisotropy of tensile strength of X80 pipeline steel[J]. Heat Treatment of Metals, 2018, 42(2): 68-71. [8]韩 乐. X80管线钢组织性能及晶体学取向关系的研究[D]. 包头: 内蒙古科技大学, 2012: 17-19. Han Le. Research on the microstructure performance and crystal orientation of X80 pipeline steel[D]. Baotou: Inner Mongolia University of Science and Technology, 2012: 17-19. |