[1]Zhao J, Jiang Z. Thermomechanical processing of advanced high strength steels[J]. Progress in Materials Science, 2018, 94: 174-242. [2]刘永刚, 潘红波, 詹 华, 等. 几种典型第三代汽车用先进高强度钢技术浅析[J]. 金属热处理, 2015, 40(8): 13-19. Liu Yonggang, Pan Hongbo, Zhan Hua, et al. Introduction of several typical 3rd generation AHSS for automotive industry[J]. Heat Treatment of Metals, 2015, 40(8): 13-19. [3]徐娟萍, 付 豪, 王 正, 等. 中锰钢的研究进展与前景[J]. 工程科学学报, 2019, 41(5): 557-572. Xu Juanping, Fu Hao, Wang Zheng, et al. Research progress and prospect of medium manganese steel[J]. Chinese Journal of Engineering, 2019, 41(5): 557-572. [4]董 瀚, 曹文全, 时 捷, 等. 第3代汽车钢的组织与性能调控技术[J]. 钢铁, 2011, 46(6): 1-11. Dong Han, Cao Wenquan, Shi Jie, et al. Microstructure and performance control technology of the 3rd generation auto sheet steels[J]. Iron and Steel, 2011, 46(6): 1-11. [5]Li X, Song R, Zhou N, et al. An ultrahigh strength and enhanced ductility cold-rolled medium-Mn steel treated by intercritical annealing[J]. Scripta Materialia, 2018, 154: 30-33. [6]Li J, Song R, Li X, et al. Microstructural evolution and tensile properties of 70 GPa·% grade strong and ductile hot-rolled 6Mn steel treated by intercritical annealing[J]. Materials Science and Engineering A, 2019, 745: 212-220. [7]Wan X, Liu G, Ding R, et al. Stabilizing austenite via a core-shell structure in the medium Mn steels[J]. Scripta Materialia, 2019, 166: 68-72. [8]Li Z C, Misra R D K, Ding H, et al. The significant impact of pre-strain on the structure-mechanical properties relationship in cold-rolled medium manganese TRIP steel[J]. Materials Science and Engineering A, 2018, 712: 206-213. [9]Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia, 2003, 51(9): 2611-2622. [10]陈连生, 张健杨, 田亚强, 等. 预先 Mn 配分处理对 Q&P 钢中 C 配分及残余奥氏体的影响[J]. 金属学报, 2015, 51(5): 527-536. Chen Liansheng, Zhang Jianyang, Tian Yaqiang, et al. Effect of Mn pre-partitioning in C partitioning and retained austenite of Q&P steels[J]. Acta Metallurgica Sinica, 2015, 51(5): 527-536. [11]Gouné M, Aoued S, Danoix F, et al. Alloying-element interactions with austenite/martensite interface during quenching and partitioning of a model Fe-C-Mn-Si alloy[J]. Scripta Materialia, 2019, 162: 181-184. [12]田亚强, 黎 旺, 郑小平, 等. 两相区退火热轧中锰钢碳化物析出行为与组织性能研究[J]. 材料导报, 2019, 33(16): 2765-2770. Tian Yaqiang, Li Wang, Zheng Xiaoping, et al. Study on carbide precipitation behavior and microstructure and mechanical property of intercritically annealed hot-rolled medium manganese steel[J]. Materials Review, 2019, 33(16): 2765-2770. [13]Hu B, Luo H, Yang F, et al. Recent progress in medium-Mn steels made with new designing strategies, a review[J]. Journal of Materials Science and Technology, 2017, 33(12): 1457-1464. [14]田亚强, 王安东, 郑小平, 等. 不同前驱体的贝氏体/铁素体复相钢的组织和性能[J]. 金属热处理, 2018, 43(4): 97-101. Tian Yaqiang, Wang Andong, Zheng Xiaoping, et al. Microstructure and properties of bainite/ferrite multiphase steel with different precursor structures[J]. Heat Treatment of Metals, 2018, 43(4): 97-101. [15]潘红波, 田亚强, 张明山, 等. 低碳硅锰钢奥氏体区形变对贝氏体组织及力学性能影响[J]. 金属热处理, 2017, 42(8): 102-105. Pan Hongbo, Tian Yaqiang, Zhang Mingshan, et al. Effect of austenite deformation on bainite microstructure and mechanical properties of low carbon Si-Mn steel[J]. Heat Treatment of Metals, 2017, 42(8): 102-105. [16]Hajy Akbary F, Sietsma J, Petrov R H, et al. A quantitative investigation of the effect of Mn segregation on microstructural properties of quenching and partitioning steels[J]. Scripta Materialia, 2017, 137: 27-30. [17]Hui W, Shao C, Zhang Y, et al. Microstructure and mechanical properties of medium Mn steel containing 3%Al processed by warm rolling[J]. Materials Science and Engineering A, 2017, 707: 501-510. [18]Han J, Kang S H, Lee S J, et al. Fabrication of bimodal-grained Al-free medium Mn steel by double intercritical annealing and its tensile properties[J]. Journal of Alloys and Compounds, 2016, 681: 580-588. [19]Wang X G, Wang L, Huang M X. In-situ evaluation of Lüders band associated with martensitic transformation in a medium Mn transformation-induced plasticity steel[J]. Materials Science and Engineering A, 2016, 674: 59-63. [20]Ma J, Lu Q, Sun L, et al. Two-step intercritical annealing to eliminate Lüders band in a strong and ductile medium Mn steel[J]. Metallurgical and Materials Transactions A, 2018, 49(10): 4404-4408. [21]Zhang Y, Ding H. Ultrafine also can be ductile: on the essence of Lüders band elongation in ultrafine-grained medium manganese steel[J]. Materials Science and Engineering A, 2018, 733: 220-223. [22]Luo H, Dong H, Huang M. Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels[J]. Materials and Design, 2015, 83: 42-48. [23]Wang X G, Wang L, Huang M X. Kinematic and thermal characteristics of Lüders and Portevin-Le Chtelier bands in a medium Mn transformation-induced plasticity steel[J]. Acta Materialia, 2017, 124: 17-29. [24]陈连生, 李 跃, 张明山, 等. 两相区位错增殖对Mn元素配分及低碳钢贝氏体组织的影响[J]. 金属学报, 2017, 53(11): 1418-1426. Chen Liansheng, Li Yue, Zhang Mingshan, et al. Effect of intercritical dislocation multiplication on Mn partitioning and microstructure evolution of bainite in low carbon steel[J]. Acta Metallurgica Sinica, 2017, 53(11): 1418-1426. |