[1]李为卫, 刘亚旭, 高惠临, 等. X80管线钢焊接热影响区的韧性分析[J]. 焊接学报, 2006, 27(2): 43-46. Li Weiwei, Liu Yaxu, Gao Huilin, et al. Analysis of toughness in HAZ for X80 pipeline steel welding[J]. Transactions of the China Welding Institution, 2006, 38(2): 43-46. [2]郭 林, 霍向东, 李烈军, 等. 冷却速度对X80管线钢焊接热影响区组织性能的影响[J]. 钢铁钒钛, 2013, 34(6): 96-100. Guo Lin, Huo Xiangdong, Li Liejun, et al. Effect of cooling rate on microstructures and properties of welding heat affected zones in X80 pipeline steel[J]. Iron Steel Vanadium Titanium, 2013, 34(6): 96-100. [3]王畅畅, 刘清友, 雍岐龙, 等. 经济型X80管线钢的CCT曲线[J]. 金属热处理, 2014, 39(12): 94-98. Wang Changchang, Liu Qingyou, Yong Qilong, et al. CCT curves of economical X80 pipeline steel[J]. Heat Treatment of Metals, 2014, 39(12): 94-98. [4]徐 杰, 李朋朋, 樊 宇, 等. 温度对焊接热模拟X80管线钢断裂韧性的影响[J]. 焊接学报, 2017, 38(1): 22-26. Xu Jie, Li pengpeng, Fan Yu, et al. Effect of temperature on fracture toughness in weld thermal simulated X80 pipeline steels[J]. Transactions of the China Welding Institution, 2017, 38(1): 22-26. [5]端 强, 阎 军, 朱国辉, 等. X80管线钢焊缝组织及裂纹形成机制[J]. 金属热处理, 2015, 40(11): 68-72. Duan Qiang, Yan Jun, Zhu Guohui, et al. Microstructure and crack formation mechanism of X80 pipeline steel welded seam[J]. Heat Treatment of Metals, 2015, 40(11): 68-72. [6]张 蕾, 石 凯, 胡美娟, 等. 冷却速度对X80管线钢焊接热影响区组织性能的影响[J]. 热加工工艺, 2011, 40(13): 110-112. Zhang Lei, Shi Kai, Hu Meijuan, et al. Effect of cooling rate on microstructure and properties of welding heat affected zone in X80 Pipeline[J]. Hot Working Technology, 2011, 40(13): 110-112. [7]陈延清, 杜则裕, 许良红. X80管线钢焊接热影响区组织和性能分析[J]. 焊接学报, 2010, 31(5): 101-104. Chen Yanqing, Du Zeyu, Xu Lianghong. Microstructure and mechanical properties of heat affected zone for X80 pipeline steel[J]. Transactions of the China Welding Institution, 2010, 31(5): 101-104. [8]胡美娟, 韩新利, 何小东, 等. 焊后冷却时间对X80级抗大变形管线钢焊接粗晶热影响区组织的影响[J]. 机械工程材料, 2012, 36(6): 42-44. Hu Meijuan, Han Xinli, He Xiaodong, et al. Effect of cooling time following welding on microstructure of welding coarse grain heat affected zone of X80 high-strain pileline steel[J]. Materials for Mechanical Engineering, 2012, 36(6): 42-44. [9]张骁勇, 高惠临, 毕宗岳, 等. 焊接热输入对X80焊管焊缝组织与性能的影响[J]. 材料工程, 2010(9): 66-70. Zhang Xiaoyong, Gao Huilin, Bi Zongyue, et al. Effects of welding heat input on microstructure and properties of welding seam in X80 grade welded pipe[J]. Journal of Materials Engineering, 2010(9): 66-70. [10]由宗彬, 李烨铮, 刘 宇. 焊接峰值温度对X80管线钢焊接接头热影响区性能影响的热模拟[J]. 机械工程材料, 2016, 40(9): 54-57. You Zongbin, Li Yezheng, Liu Yu, et al. Thermal simulation for effect of welding peak temperature on properties of welded joint heat affected zone of X80 pipeline steel[J]. Materials for Mechanical Engineering, 2016, 40(9): 54-57. [11]张德芬, 王 进, 李烨铮, 等. 冷却时间对X80钢焊接热影响区粗晶区组织及性能的影响[J]. 材料热处理学报, 2014, 35(S2): 129-133. Zhang Defen, Wang Jin, Li Yezheng, et al. Effect of cooling time on microstructure and properties of coarse grain heat-affected zone in X80 steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(S2): 129-133. [12]张德芬, 王 进, 景 亮. 等. 热输入对X80管线钢焊接粗晶区组织与性能的影响[J]. 金属热处理, 2014, 39(2): 47-50. Zhang Defen, Wang Jin, Jing Liang, et al. Influence of heat input on microstructure and properties of welding coarse-grained zone of X80 pipeline steel[J]. Heat Treatment of Metals, 2014, 39(2): 47-50. [13]崔忠圻, 覃耀春. 金属学及热处理[M]. 2版. 北京: 机械工业出版社, 2007. [14]张效宁, 景 益, 余 燕, 等. SA738Gr.B钢奥氏体化高温停留时间及峰值温度对组织演变及性能影响的研究[J]. 热加工工艺, 2013, 42(7): 22-25. Zhang Xiaoning, Jing Yi, Yu Yan, et al. Study on microstructure evolution and properties of SA738Gr.B steel with different austenitizing holding time and peak temperature[J]. Hot Working Technology, 2013, 42(7): 22-25. [15]苗华军, 王 岩, 曾 莉. 高Nb-X80管线钢奥氏体晶粒长大规律[J]. 金属热处理, 2012, 37(9): 64-66. Miao Huajun, Wang Yan, Zeng Li. Austenite grain growth behavior of high Nb-X80 pipeline steel[J]. Heat Treatment of Metals, 2012, 37(9): 64-66. |