[1]张彦华. 焊接结构疲劳分析[M]. 北京: 化学工业出版社, 2013: 48-96. [2]张 誉, 张春涛. 环境腐蚀对Q345角钢疲劳性能的影响研究[J]. 表面技术, 2016, 45(7): 36-40. Zhang Yu, Zhang Chuntao. Effect of environmental corrosion on fatigue properties of Q345 equal angles[J]. Surface Technology, 2016, 45(7): 36-40. [3]刘曦程, 刘光连, 聂振超, 等. 应力控制下的Q345钢疲劳寿命预测研究[J]. 塑性工程学报, 2018, 25(3): 212-216. Liu Xicheng, Liu Guanglian, Nie Zhenchao, et al. Study on fatigue life prediction of Q345 steel under stress control[J]. Journal of Plasticity Engineering, 2018, 25(3): 212-216. [4]付 磊, 王清远, 罗云蓉, 等. 扭转预应变对Q345R钢超低周疲劳性能影响研究[J]. 工程科学与技术, 2018, 50(5): 224-230. Fu Lei, Wang Qingyuan, Luo Yunrong, et al. Effect of torsional pre-strain on the extremely low cycle fatigue properties of Q345R steel[J]. Advanced Engineering Sciences, 2018, 50(5): 224-230. [5]万 桥, 姜新华, 赵 栋, 等. 热处理对Q345B预埋槽道疲劳性能的影响[J]. 材料保护, 2019(2): 91-93. Wan Qiao, Jiang Xinhua, Zhao Dong, et al. Effect of heat treatment on fatigue performance of Q345B-based embedded anchor channel[J]. Journal of Materials Production, 2019(2): 91-93. [6]张春涛, 金汉林, 朱 立. 高温自然冷却后Q345钢材疲劳性能试验研究[J/OL]. 建筑结构学报, 2019. http://doi.org/10.14006/j.jzjgxb.2019.0094. Zhang Chuntao, Jin Hanlin, Zhu Li. Experimental research on the fatigue properties of Q345 steel after natural cooled down from high temperature[J/OL]. Journal of Building Structures, 2019. http://doi.org/10.14006/j.jzjgxb.2019.0094. [7]崔仕明, 王睿东, 游 翔, 等. Q345低周疲劳性能与疲劳寿命预测分析[J]. 实验力学, 2014, 29(5): 537-542. Cui Shiming, Wang Ruidong, You Xiang, et al. On the low cycle fatigue behavior and fatigue life prediction of Q345 steel[J]. Journal of Experimental Mechanics, 2014, 29(5): 537-542. [8]阀石生, 梁益龙, 赵 飞. 夹杂物尺寸及位置对51CrV4弹簧钢疲劳寿命的影响[J]. 机械工程材料, 2011, 35(7): 85-87. Fa Shisheng, Liang Yilong, Zhao Fei. Influences of inclusion size and position on fatigue life of 51CRV4 spring steel[J]. Materials for Mechanical Engineering, 2011, 35(7): 85-87. [9]赵凤晓, 李 会, 许晓嫦, 等. 夹杂物尺寸对汽车车轮用钢疲劳寿命的影响[J]. 矿冶工程, 2013, 33(1): 101-105. Zhao Fengxiao, Li Hui, Xu Xiaochang, et al. Influence of inclusion size on fatigue life of high strength steel for automobile wheel[J]. Mining and Metallurgical Engineering, 2013, 33(1): 101-105. [10]吴建华. 夹杂物对2Cr13钢疲劳性能的影响[J]. 热加工工艺, 2009, 38(12): 48-49. Wu Jianhua. Effect of inclusions on fatigue properties of 2Cr13 steel[J]. Hot Working Technology, 2009, 38(12): 48-49. [11]Murakami Y, Kodama S, Konima S. Quantitative evaluation of effect of nonmetallic inclusions on fatigue strength of high strength steel[J]. Transaction of the Japan Society of Mechanical Engineers, 1988, 54: 688-696. [12]Murakami Y, Usuki H. Prediction of fatigue strength of high-strength steels based on statistical evaluation of inclusion size[J]. Transaction of the Japan Society of Mechanical Engineers, 1989, 55: 213-221. [13]Murakami Y, Endo M. Effect of defects, inclusions and inhomogeneties on fatigue strength[J]. International Journal of Fatigue, 1994, 16(3): 163-182. [14]杨振国, 张继明, 李守新, 等. 高周疲劳条件下高强钢临界夹杂物尺寸估算[J]. 金属学报, 2005, 41(11): 1136-1142. Yang Zhenguo, Zhang Jiming, Li Shouxin, et al. Estimation of the critical size of inclusion in high strength steel under high cycle fatigue condition[J]. Acta Metallurgica Sinica, 2005, 41(11): 1136-1142. |