[1]刘丽娟. 大锻件材料内部空洞型缺陷高温焊合过程的研究[D]. 上海: 上海交通大学, 2010. Liu Lijuan. Study on the bonding process of inner void defects in heavy forging at high temperature[D]. Shanghai: Shanghai Jiao Tong University, 2010. [2]任运来. 大型锻件内部缺陷修复条件和修复方法研究[D]. 秦皇岛: 燕山大学, 2003. Ren Yunlai. Study on healing condition and method of internal defect of large forgings[D]. Qinhuangdao: Yanshan University, 2003. [3]黄 倩, 温 彤, 刘 清, 等. 大型锻件组织与性能的影响因素及其控制技术[J]. 热加工工艺, 2015, 44(13): 6-8. Huang Qian, Wen Tong, Liu Qing, et al. Affecting factors and control technology of microstructure and properties of large forgings[J]. Hot Working Technology, 2015, 44(13): 6-8. [4]李凯强, 杨银辉, 钱 昊, 等. 03Cr18NiMoN节镍双相不锈钢的热变形行为及热加工图[J]. 钢铁研究学报, 2019, 31(6): 563-572. Li Kaiqiang, Yang Yinhui, Qian Hao, et al. Hot deformation behavior and hot working drawing of 03Cr18NiMoN low-nickel duplex stainless steel[J]. Journal of Iron and Steel Research, 2019, 31(6): 563-572. [5]Quan G Z, Shi R J, Zhao J, et al. Modeling of dynamic recrystallization volume fraction evolution for AlCu4SiMg alloy and its application in FEM[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(6): 1138-1151. [6]马 潇, 徐 乐, 王毛球, 等. 25Cr3Mo3NiNbZr钢热变形行为及微观组织研究[J]. 热加工工艺, 2019, 48(19): 23-29. Ma Xiao, Xu Le, Wang Maoqiu, et al. Study on hot deformation behavior and microstructure of 25Cr3Mo3NiNbZr steel[J]. Hot Working Technology, 2019, 48(19): 23-29. [7]蔡 薇, 高鹏哲, 陈辉明, 等. Cu-Cr-Zr-Ti合金高温热变形行为及热加工图[J]. 金属热处理, 2019, 44(8): 147-154. Cai Wei, Gao Pengzhe, Chen Huiming, et al. High temperature deformation behavior and hot processing map of Cu-Cr-Zr-Ti alloy[J]. Heat Treatment of Metals, 2019, 44(8): 147-154. [8]乔志霞, 刘永长, 严泽生, 等. 30CrNi3MoV低合金超高强钢中的马氏体相变[J]. 材料科学与工艺, 2012, 20(5): 138-142. Qiao Zhixia, Liu Yongchang, Yan Zesheng, et al. Martensitic transformation in the 30CrNi3MoV low-alloy ultra-high strength steel[J]. Materials Science and Technology, 2012, 20(5): 138-142. [9]李 强, 马常祥, 赖祖涵. 30CrNi3MoV钢绝热剪切带中微观组织的演变[J]. 钢铁研究学报, 1996(1): 25-28. Li Qiang, Ma Changxiang, Lai Zuhan. Microstructural change during adiabatic shear band formation in 30CrNi3MoV steel[J]. Journal of Iron and Steel Research, 1996(1): 25-28. [10]赵洛凯, 要玉宏. 工程机械用30CrNi3MoV钢的热处理与组织性能[J]. 金属热处理, 2019, 44(7): 125-130. Zhao Luokai, Yao Yuhong. Heat treatment of construction machinery steel 30CrNi3MoV and its microstructure and properties[J]. Heat Treatment of Metals, 2019, 44(7): 125-130. [11]Jonas J J, Sellars C M, Tegart W J M. Strength and structure under hot-working conditions[J]. International Materials Reviews, 1969, 14(1): 1-24. [12]刘建军, 王克鲁, 鲁世强, 等. Ti-Nb合金热变形行为及应变耦合本构模型[J]. 材料热处理学报, 2019, 40(5): 156-161. Liu Jianjun, Wang Kelu, Lu Shiqiang, et al. Hot deformation behavior and strain compensation constitutive model of Ti-Nb alloy[J]. Transactions of Materials and Heat Treatment, 2019, 40(5): 156-161. [13]赵宏禹, 刘荣佩, 王长军, 等. 9Ni马氏体不锈钢的热变形行为及其能量耗散图[J]. 钢铁, 2018, 53(9): 74-79. Zhao Hongyu, Liu Rongpei, Wang Changjun, et al. Hot deformation behavior and energy dissipation diagram of 9Ni martensite stainless steel[J]. Iron and Steel, 2018, 53(9): 74-79. [14]袁武华, 龚雪辉, 孙永庆, 等. 0Cr16Ni5Mo低碳马氏体不锈钢的热变形行为其热加工图[J]. 材料工程, 2016, 44(5): 8-14. Yuan Wuhua, Gong Xuehui, Sun Yongqing, et al. Hot deformation behavior and processing map of 0Cr16Ni5Mo low carbon martensitic stainless steel[J]. Journal of Materials Engineering, 2016, 44(5): 8-14. [15]张 威, 闫东娜, 邹德宁, 等. 超低碳13Cr-5Ni-2Mo马氏体不锈钢热变形行为及本构关系[J]. 钢铁, 2012, 47(5): 69-74. Zhang Wei, Yan Dongna, Zou Dening, et al. Hot deformation behavior and constitutive relationship for super-low carbon 13Cr-5Ni-2Mo martensitic stainless steel[J]. Iron and Steel, 2012, 47(5): 69-74. [16]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32. [17]程晓农, 桂 香, 罗 锐, 等. 核电装备用奥氏体不锈钢的高温本构模型及动态再结晶[J]. 材料导报, 2019, 33(11): 1775-1781. Cheng Xiaonong, Gui Xiang, Luo Rui, et al. Constitutive equation and dynamic recrystallization behavior of 316L austenitic stainless steel for nuclear power equipment[J]. Materials Reports, 2019, 33(11): 1775-1781. [18]罗 锐, 程晓农, 徐桂芳, 等. 新型Fe-20Cr-30Ni-0.6Nb-2Al-Mo合金热变形行为及本构模型[J]. 稀有金属, 2017, 41(2): 132-140. Luo Rui, Cheng Xiaonong, Xu Guifang, et al. Constitutive modeling for elevated temperature flow behavior of Fe-20Cr-30Ni-0.6Nb-2Al-Mo alloy[J]. Chinese Journal of Rare Metals, 2017, 41(2): 132-140. [19]Prasad Y V R K. Processing maps: A status report[J]. Journal of Materials Engineering and Performance, 2003, 12(6): 638-645. [20]Prasad Y V R K. Dynamic materials model: Basis and principles[J]. Metallurgical and Materials Transactions A, 1996, 27(1): 235-236. [21]Prasad Y V R K, Seshacharyulu T. Modelling of hot deformation for microstructural control[J]. International Materials Reviews, 1998, 43(6): 243-258. [22]Prasad Y V R K, Rso K P. Effect of homogenization on the hot deformation behavior of cast AZ31 magnesium alloy[J]. Materials and Design, 2009, 30(9): 3723-3730. |