[1]王金玲, 张书丽. Cr4Mo4V钢制轴承零件的真空热处理工艺[J]. 轴承, 2008(4): 16-17. Wang Jinling, Zhang Shuli. Vacuum heat treatment process of Cr4Mo4V steel bearing parts[J]. Bearing, 2008(4): 16-17. [2]吴运榜, 樊志强, 叶健熠. 冷处理对Cr4Mo4V钢尺寸和高温接触疲劳寿命的影响[J]. 特殊钢, 1999, 20(3): 17-20. Wu Yunbang, Fan Zhiqiang, Ye Jianyi. Effect of cold treatment of steel Cr4Mo4V on dimension and contact fatigue life at high temperature[J]. Special Steel, 1999, 20(3): 17-20. [3]杨培基, 吴运榜. Cr4Mo4V高温轴承钢热处理工艺及性能的研究[J]. 特殊钢, 1980(2): 64-81. Yang Peiji, Wu Yunbang. Study on heat treatment process and properties of Cr4Mo4V high temperature bearing steel[J]. Special Steel, 1980(2): 64-81. [4]王兴刚, 葛泉江. 航空发动机主轴轴承工作特点[J]. 哈尔滨轴承, 2006(4): 3-4. Wang Xinggang, Ge Quanjiang. Working characteristic of spindle bearing for aviation engine[J]. Journal of Harbin Bearing, 2006(4): 3-4. [5]Zhao J, Wang T S, Lü B, et al. Microstructures and mechanical properties of a modified high-C-Cr bearing steel with nano-scaled bainite[J]. Materials Science and Engineering A, 2015, 628: 327-331. [6]Wei D Y, Gu J L, Fang H S, et al. Fatigue behavior of 1500 MPa bainite+martensite duplex-phase high strength steel[J]. International Journal of Fatigue, 2004, 26: 437-442. [7]Young C H, Bhadeshia H K D H. Strength of mixtures of bainite and martensite[J]. Materials Science and Technology, 1994, 10: 209-214. [8]Chakraborty J, Bhattacharjee D, Manna I. Development of ultrafine bainite+martensite duplex microstructure in SAE 52100 bearing steel by prior cold deformation[J]. Scripta Materialia, 2009, 61: 604-607. [9]Tsuji N, Maki T. Enhanced structural refinement by combining phase transformation and plastic deformation in steels[J]. Scripta Materialia, 2009, 60: 1044-1049. [10]Babu S S, Specht E D, David S A, et al. In-situ observations of lattice parameter fluctuations in austenite and transformation to bainite[J]. Metallurgical and Materials Transactions A, 2005, 36: 3281-3289. [11]顾邦平, 胡 雄, 徐冠华, 等. 基于位错密度演化的高频振动时效微观机理[J]. 稀有金属材料与工程, 2018, 47(8): 207-212. Gu Bangping, Hu Xiong, Xu Guanhua, et al. Microcosmic mechanism of high-frequency vibratory stress relief based on dislocation density evolution[J]. Rare Metal Materials and Engineering, 2018, 47(8): 207-212. [12]Chakraborty J, Bhattacharjee D, Manna I. Microstructural refinement of bainite and martensite for enhanced strength and toughness in high-carbon low-alloy steel[J]. Metallurgical and Materials Transactions A, 2010, 41: 2871-2878. [13]Podder A S, Lonardelli I, Molinari A, et al. Thermal stability of retained austenite in bainitic steel: An in situ study[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467: 3141-3156. [14]Peet M. Transformation and tempering of low-temperature bainite[D]. Cambridge: University of Cambridge, 2010. [15]Caballeroa F G, Wei Y H, Miller M K, et al. Three phase crystallography and solute distribution analysis during residual austenite decomposition in tempered nanocrystalline bainitic steels[J]. Materials Characterization, 2014, 88: 15-20. |