[1] Yeh J W, Chen S K, Lin S J, et al.Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [2] Manzoni A, Daoud H, VöLkl R, et al. Phase separation in equiatomic AlCoCrFeNi high-entropy alloy[J]. Ultramicroscopy, 2013, 132: 212-215. [3] Singh S, Wanderka N, Murty B S, et al.Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy[J]. Acta Materialia, 2011, 59(1): 182-190. [4] Swiatek Z, Morgiel J, Czerwinski F, et al.Microstructure and mechanical properties of the new Nb25Sc25Ti25Zr25 eutectic high entropy alloy[J]. Materials Science and Engineering A, 2016, 651: 590-597. [5] Otto F, Dlouhy A, Somsen Ch, et al.The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J]. Acta Materialia, 2013, 61(15): 5743-5755. [6] Zhang S, Wu C L, Zhang C H, et al.Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance[J]. Optics and Laser Technology, 2016, 84: 23-31. [7] Chang Yao-Jen, Yeh An-Chou.The evolution of microstructures and high temperature properties of AlxCo1.5CrFeNi1.5Tiy high entropy alloys[J]. Journal of Alloys and Compounds, 2015, 653: 379-385. [8] Wu Y D, Cai Y H, Chen X H, et al.Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys[J]. Materials and Design, 2015, 83: 651-660. [9] Chao Q, Guo T, Jarvis T, et al.Direct laser deposition cladding of AlxCoCrFeNi high entropy alloys on a high-temperature stainless steel[J]. Surface and Coatings Technology, 2017, 332: 440-451. [10] Raza A, Kang B, Lee J, et al.Transition in microstructural and mechanical behavior by reduction of sigma-forming element content in a novel high entropy alloy[J]. Materials and Design, 2018, 145: 11-19. [11] 农智升, 张波, 朱景川. 退火对CrCuFeMnTi高熵合金组织结构和力学性能的影响[J]. 稀有金属材料与工程, 2018, 47(9): 225-230. Nong Zhisheng, Zhang Bo, Zhu Jingchuan.Effect of annealing on microstructure and mechanical properties of CrCuFeMnTi high entropy alloy[J]. Rare Metal Materials and Engineering, 2018, 47(9): 225-230. [12] 张越, 刘亮, 商剑. 退火温度对CoCrFeNiAl高熵合金组织与性能的影响[J]. 金属热处理, 2017, 42(9): 36-39. Zhang Yue, Liu Liang, Shang Jian.Effect of annealing temperature on microstructure and properties of CoCrFeNiAl high-entropy alloy[J]. Heat Treatment of Metals, 2017, 42(9): 36-39. [13] Zhang M N, Zhou X L, Yu X N, et al.Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding[J]. Surface and Coatings Technology, 2017, 311: 321-329. [14] 沙明红, 张丽, 张峻巍, 等. 退火对激光熔覆AlCoCrFeNiTi0.5高熵合金涂层组织和耐磨性的影响[J]. 稀有金属材料与工程, 2017, 46(5): 1237-1240. Sha Minghong, Zhang Li, Zhang Junwei, et al.Effects of annealing on the microstructure and wear resistance of AlCoCrFeNiTi0.5 high-entropy alloy coating prepared by laser cladding[J]. Rare Metal Materials and Engineering, 2017, 46(5): 1237-1240. [15] Takeuchi A, Inoue A.Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions, 2005, 46(12): 2817-2829. [16] Zhang Y, Zuo T T, Tang Z, et al.Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61: 1-93. [17] 盛洪飞. AlxCoCrCuFeNi系高熵合金及其复合材料的制备、微结构与性能研究[D]. 合肥: 中国科学技术大学, 2014. [18] 薛彦均, 尉文超, 王毛球, 等. Si对FeMoCrVTiSix高熵合金组织和力学性能的影响[J]. 特种铸造及有色合金, 2020, 40(1): 112-116. Xue Yanjun, Yu Wenchao, Wang Maoqiu, et al.Effect of Si on the microstructure and mechanical properties of FeMoCrVTiSix high-entropy alloy[J]. Special Casting and Nonferrous Alloys, 2020, 40(1): 112-116. |