[1] 徐 明,陆建锋,李红兵,等.考虑节点域加强的Q690GJ高强钢梁柱节点抗震性能试验研究[J].钢结构,2016,31(3):6-13. Xu Ming,Lu Jianfeng,Li Hongbing,et al.Experimental research on the aseismic behavior of Q690GJ high strength steel beam-to-column connections considering reinforced panel zone[J].Steel Construction,2016,31(3):6-13. [2] 蔡昕芮.中国地震发生频数及区域性特征的计算统计分析[J].统计与管理,2016(11):52-54. Cai Xinrui.Statistic analysis of China earthquake frequency and regional characteristics[J].Statistics and Management,2016(11):52-54. [3] Hu Fangxin,Shi Gang,Shi Yongjiu.Experimental study on seismic behavior of high strength steel frames:Global response[J].Engineering Structures,2017,131:163-179. [4] 任文君,宋 文.690 MPa高强韧建筑用钢的热处理与组织性能研究[J].材料开发与应用,2018,33(6):56-62. Ren Wenjun,Song Wen.Study on heat treatment and microstructure and properties of 690 MPa high strength and toughness construction steel[J].Development and Application of Materials,2018,33(6):56-62. [5] 那丽岩,周明荣.690 MPa级高强抗震钢板的合金化与回火工艺[J].金属热处理,2019,44(10):140-146. Na Liyan,Zhou Mingrong.Alloying and tempering process of 690 MPa high strength seismic steel plate[J].Heat Treatment of Metals,2019,44(10):140-146. [6] 王 通,张 朋,王九清,等.原始组织对690 MPa级海工钢亚温淬火后强韧性的影响[J].钢铁,2020,55(12):72-80. Wang Tong,Zhang Peng,Wang Jiuqing,et al.Effect of original structure on strength and toughness of 690 MPa grade marine engineering steel after intercritical quenching[J].Iron and Steel,2020,55(12):72-80. [7] 詹 放,林田子,阴树标,等.回火工艺对690 MPa级抗震耐火钢板组织和力学性能的影响[J].昆明理工大学学报(自然科学版),2020,45(5):26-34. Zhan Fang,Lin Tianzi,Yin Shubiao,et al.Effect of tempering process on microstructure and mechanical properties of 690 MPa grade anti-seismic fire-resistant steel plates[J].Journal of Kunming University of Science and Technology (Natural Science),2020,45(5):26-34. [8] 张 鹏,严 玲,周 成,等.淬火工艺对大厚度690 MPa级海工钢板组织性能的影响[J].金属热处理,2018,43(10):107-110. Zhang Peng,Yan Ling,Zhou Cheng,et al.Effect of quenching process on microstructure and properties of heavy thickness 690 MPa grade marine engineering steel plate[J].Heat Treatment of Metals,2018,43(10):107-110. [9] 李振团,柴 锋,罗小兵,等.时效温度对Cu沉淀强化超高强海工钢力学性能的影响[J].材料导报,2020,34(6):6132-6137. Li Zhentuan,Chai Feng,Luo Xiaobing,et al.Effect of aging temperature on mechanical properties of ultra high strength marine engineering steel strengthened by Cu precipitation[J].Materials Reports,2020,34(6):6132-6137. [10] 李 彤.Mn、Ni元素对钢中富Cu相析出强化的影响[D].上海:上海大学,2019. Li Tong.Effect of Mn and Ni on precipitation strengthening of Cu-rich phase in steel[D].Shanghai:Shanghai University,2019. [11] Matsuda H,Bhadeshia H K D H.Kinetics of the bainite transformation[J].Proceedings of the Royal Society of London.Series A:Mathematical,Physical and Engineering Sciences,2004,460:1707-1722. [12] 程时遐,张骁勇,冯耀荣,等.终冷温度对X100管线钢组织与性能的影响[J].金属热处理,2015,40(7):1-7. Cheng Shixia,Zhang Xiaoyong,Feng Yaorong,et al.Effect of final cooling temperature on microstructure and properties of X100 pipeline steel[J].Heat Treatment of Metals,2015,40(7):1-7. [13] 孙明雪.超低碳纳米富Cu相强化HSLA钢组织性能调控机理研究[D].沈阳:东北大学,2017. Sun Mingxue.Study on regulation mechanism for microstructure and mechanical properties of ultra-low carbon nano-sized Cu precipitation strengthened HSLA steel[D].Shenyang:Northeastern University,2017. [14] 雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社,2006. [15] 李小琳,王昭东,邓想涛,等.超快冷终冷温度对含Nb-V-Ti微合金钢组织转变及析出行为的影响[J].金属学报,2015,51(7):784-790. Li Xiaolin,Wang Zhaodong,Deng Xiangtao,et al.Effect of final temperature after ultrafast cooling on microstructural evolution and precipitation behavior of Nb-V-Ti bearing low alloy steel[J].Acta Metallurgica Sinica,2015,51(7):784-790. |