[1]Zhang J M, Huo C Y, Ma Q R, et al. NbC-TiN co-precipitation behavior and mechanical properties of X90 pipeline steels by critical-temperature rolling process[J]. International Journal of Pressure Vessels and Piping, 2018, 165: 29-33. [2]Sharma S K, Maheshwari S. A review on welding of high strength oil and gas pipeline steels[J]. Journal of Natural Gas Science and Engineering, 2017, 38: 203-217. [3]Zhang J, Luo T, Wang X, et al. Formation mechanism of nanoscale transformation twinning in ultra-low-carbon high-strength pipeline steels[J]. Journal of Materials Science, 2019, 54(2): 1-11. [4]谷 雨, 周小宇, 徐 凯, 等. 高强X90管线钢焊接热影响区脆化及软化行为[J]. 金属热处理, 2018, 43(6): 74-78. Gu Yu, Zhou Xiaoyu, Xu Kai, et al. Embrittlement and soften behaviors of heat affected zone of high strength X90 pipeline steel[J]. Heat Treatment of Metals, 2018, 43(6): 74-78. [5]王慧慧, 宋开兰, 左秀荣, 等. 厚规格多相组织X80管线钢的断裂行为[J]. 金属热处理, 2019, 44(8): 228-235. Wang Huihui, Song Kailan, Zuo Xiurong, et al. Fracture behavior of multi-phase heavy wall X80 pipeline steel[J]. Heat Treatment of Metals, 2019, 44(8): 228-235. [6]牛延龙, 李远征, 刘清友, 等. X90管线钢的组织和性能特征[J]. 金属热处理, 2018, 43(10): 143-150. Niu Yanlong, Li Yuanzheng, Liu Qingyou, et al. Microstructure and properties of X90 pipeline steel[J]. Heat Treatment of Metals, 2018, 43(10): 143-150. [7]Gu Y, Tian P, Wang X, et al. Non-isothermal prior austenite grain growthof a high-Nb X100 pipeline steel during a simulated welding heat cycle process[J]. Materials and Design, 2016, 89: 589-596. [8]Qiao G Y, Xiao F R, Zhang X B, et al. Effects of contents of Nb and C on hot deformation behaviors of high Nb X80 pipeline steels[J]. Transactions of Nonferrous Metals Society of China, 2009, 19: 1395-1399. [9]李殿杰, 贾书君, 胡日荣, 等. Nb对抗大变形管线钢铁素体相变的影响[J]. 金属热处理, 2017, 42(6): 161-165. Li Dianjie, Jia Shujun, Hu Rirong, et al. Effect of niobium on ferrite transformation of high-strain pipeline steel[J]. Heat Treatment of Metals, 2017, 42(6): 161-165. [10]张清清, 章传国, 郑 磊. 合金元素和回火温度对管线钢组织与性能的影响[J]. 金属热处理, 2018, 43(2): 15-19. Zhang Qingqing, Zhang Chuanguo, Zheng Lei. Effects of alloy element and tempering temperature on microstructure and mechanical properties of pipeline steel[J]. Heat Treatment of Metals, 2018, 43(2): 15-19. [11]Xiao F R, Liao B, Ren D L, et al. Acicular ferritic microstructure of a low-carbon Mn-Mo-Nb microalloyed pipeline steel[J]. Materials Characterization, 2005, 54(4/5): 305-314. [12]Kong J H, Zhen L, Guo B, et al. Influence of Mo content on microstructure and mechanical properties of high strength pipeline steel[J]. Materials and Design, 2004, 25(8): 723-728. [13]Chen X W, Qiao G Y, Han X L, et al. Effects of Mo, Cr and Nb on microstructure and mechanical properties of heat affected zone for Nb-bearing X80 pipeline steels[J]. Materials and Design, 2014, 53(1): 888-901. [14]段 贺, 单以银, 杨 柯, 等. X80低温用高强度管线钢的工艺与组织性能试验[J]. 钢铁, 2020, 55(2): 103-111. Duan He, Shan Yiyin, Yang Ke, et al. Experimental on process, microstructure and mechanical properties of X80 high strength pipeline steel for low temperature[J]. Iron and Steel, 2020, 55(2): 103-111. [15]Lee W B, Hong S G, Park C G, et al. Influence of Mo on precipitation hardening in hot rolled HSLA steels containing Nb[J]. Scripta Materialia, 2000, 43(4): 319-324. [16]王 伟, 单以银, 杨 柯. 超低碳微合金管线钢中针状铁素体的组成对强度的影响[J]. 金属学报, 2007, 43(6): 578-582. Wang Wei, Shan Yiyin, Yang Ke. Effect of acicular ferrite constitution on strength of ultralow-carbon micro-alloyed pipeline steel[J]. Acta Metallurgica Sinica, 2007, 43(6): 578-582. [17]Lambert-Perlade A, Gourgues A F, Pineau A. Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel[J]. Acta Materialia, 2004, 52(8): 2337-2348. [18]Hwang B, Kim Y G, Lee S, et al. Effective grain size and Charpy impact properties of high-toughness X70 pipeline steels[J]. Metallurgical and Materials Transactions A, 2005, 36(8): 2107-2114. [19]Díaz-Fuentes M, Iza-Mendia A, Gutierrez I. Analysis of different acicular ferrite microstructures in low-carbon steels by electron backscattered diffraction. Study of their toughness behavior[J]. Metallurgical & Materials Transactions A, 2003, 34: 2505-2516. [20]Davis C L, King J E. Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: Part I. Fractographic evidence[J]. Metallurgical and Materials Transactions A, 1994, 25(3): 563-573. [21]Zeng Y P, Zhu P Y, Tong K. Effect of microstructure on the low temperature toughness of high strength pipeline steels[J]. International Journal of Minerals, Metallurgy, and Materials, 2015, 22: 254-261. |