[1]夏思海, 武美萍, 马毅青, 等. TiC含量对TC4合金激光熔覆层组织和性能的影响[J]. 金属热处理, 2020, 45(6): 212-215. Xia Sihai, Wu Meiping, Ma Yiqing, et al. Effect of TiC content on microstructure and properties of laser clad layer on TC4 alloy[J]. Heat Treatment of Metals, 2020, 45(6): 212-215. [2]Xu X, Han J, Wang C, et al. Laser cladding of composite bioceramic coatings on titanium alloy[J]. Journal of Materials Engineering and Performance, 2016, 25(2): 656-667. [3]鲍学淳, 程 礼, 陈 煊, 等. 热处理工艺对TC4钛合金组织和力学性能的影响[J]. 金属热处理, 2019, 44(6): 137-140. Bao Xuechun, Cheng Li, Chen Xuan, et al. Effect of heat treatment process on microstructure and mechanical properties of TC4 titanium alloy[J]. Heat Treatment of Metals, 2019, 44(6): 137-140. [4]郑 敏, 樊 丁, 李秀坤, 等. 激光熔覆钛基生物陶瓷涂层的制备及其界面研究[J]. 稀有金属材料与工程, 2009, 38(11): 2004-2007. Zheng Min, Fan Ding, Li Xiukun, et al. Preparation and interface research of bioceramic coating by laser cladoping on the surface of titanium alloy substrate[J]. Rare Metal Materials and Engineering, 2009, 38(11): 2004-2007. [5]谭金花, 孙荣禄, 牛 伟, 等. 激光熔覆钛基金属陶瓷复合涂层的组织与性能[J]. 金属热处理, 2020, 45(7): 189-193. Tan Jinhua, Sun Ronglu, Niu Wei, et al. Microstructure and properties of laser clad titanium-based cermet composite coating[J]. Heat Treatment of Metals, 2020, 45(7): 189-193. [6]Farayibi P K, Abioye T E, Murray J W, et al. Surface improvement of laser clad Ti-6Al-4V using plain waterjet and pulsed electron beam irradiation[J]. Journal of Materials Processing Technology, 2015, 218: 1-11. [7]刘家奇, 宋明磊, 陈传忠, 等. 钛合金表面激光熔覆技术的研究进展[J]. 金属热处理, 2019, 44(5): 87-96. Liu Jiaqi, Song Minglei, Chen Chuanzhong, et al. Research progress of laser cladding technology on surface of titanium alloy[J]. Heat Treatment of Metals, 2019, 44(5): 87-96. [8]Navas C, Conde A, Fernandez B J, et al. Laser coatings to improve wear resistance of mould steel[J]. Surface & Coatings Technology, 2005, 194(1): 136-142. [9]贺 星, 王 晶, 孔德军, 等. TiC对激光熔覆TiC-Ti-Al涂层结构与性能的影响[J]. 金属热处理, 2018, 43(8): 39-44. He Xing, Wang Jing, Kong Dejun, et al. Effect of TiC on microstructure and properties of TiC-Ti-Al coating prepared by laser cladding[J]. Heat Treatment of Metals, 2018, 43(8): 39-44. [10]Yan Y, Neville A, Dowson D. Tribo-corrosion properties of cobalt-based medical implant alloys in simulated biological environments[J]. Wear, 2007, 263(7): 1105-1111. [11]邓乔元, 李延涛, 经佩佩, 等. 等离子体表面改性用于提高人工关节椎间盘耐磨耐蚀性的研究进展[J]. 中国表面工程, 2019, 32(5): 1-12. Deng Qiaoyuan, Li Yantao, Jing Peipei, et al. Research progress on wear and corrosion resistance of artificial joint and disc by plasma surface modification[J]. China Surface Engineering, 2019, 32(5): 1-12. [12]Swaminathan V, Gilbert J L. Fretting corrosion of CoCrMo and Ti6Al4V interfaces[J]. Biomaterials, 2012, 33(22): 5487-5503. [13]Zhou X, Li K, Zhang D, et al. Textures formed in a CoCrMo alloy by selective laser melting[J]. Journal of Alloys and Compounds, 2015, 631: 153-164. [14]Darvish K, Chen Z W, Pasang T. Reducing lack of fusion during selective laser melting of CoCrMo alloy: Effect of laser power on geometrical features of tracks[J]. Materials and Design, 2016, 112: 357-366. [15]解 航, 张安峰, 李涤尘, 等. 激光金属直接成形Ti6Al4V-CoCrMo梯度材料开裂研究[J]. 中国激光, 2013, 40(11): 97-103. Xie Hang, Zhang Anfeng, Li Dichen, et al. Research on the cracking of Ti6Al4V-CoCrMo gradient material fabricated by laser metal direct forming[J]. Chinese Journal of Lasers, 2013, 40(11): 97-103. [16]Tabernero I, Lamikiz A, Martínez S, et al. Evaluation of the mechanical properties of Inconel718 components built by laser cladding[J]. International Journal of Machine Tools and Manufacture, 2011, 51(6): 465-470. [17]Cheng B, Shrestha S, Chou K. Stress and deformation evaluations of scanning strategy effect in selective laser melting[J]. Additive Manufacturing, 2016, 12: 240-251. [18]陈德宁, 刘婷婷, 廖文和, 等. 扫描策略对金属粉末选区激光熔化温度场的影响[J]. 中国激光, 2016, 43(4): 74-80. Chen Dening, Liu Tingting, Liao Wenhe, et al. Temperature field during selective laser melting of metal powder under different scanning strategies[J]. Chinese Journal of Lasers, 2016, 43(4): 74-80. [19]邓诗诗, 杨永强, 李 阳, 等. 分区扫描路径规划及其对SLM成型件残余应力分布的影响[J]. 中国激光, 2016, 43(12): 67-75. Deng Shishi, Yang Yongqiang, Li Yang, et al. Planning of area-partition scanning path and its effect on residual stress of SLM moldingparts[J]. Chinese Journal of Lasers, 2016, 43(12): 67-75. [20]张宇祺. 激光增材制造金属零件过程中的热力学分析及热变形研究[D]. 沈阳: 沈阳工业大学, 2019: 65-74. Zhang Yuqi. Thermodynamic analysis and thermal deformation in the process of laser additives manufacturing metal parts[D]. Shenyang: Shenyang University of Technology, 2019: 65-74. [21]韩 会, 祁文军, 党元晓, 等. 路径设置对304不锈钢激光熔覆温度场及应力应变场的影响[J]. 热加工工艺, 2017, 46(12): 148-152. Han Hui, Qi Wenjun, Dang Yuanxiao, et al. Effect of path set on laser cladding temperature field and stress and strain field of 304 stainless steel[J]. Hot Working Technology, 2017, 46(12): 148-152. [22]陈文志, 周 红, 徐立君. 停顿时间对多道熔覆镍基合金温度场的影响[J]. 光学技术, 2020, 46(1): 96-101. Chen Wenzhi, Zhou Hong, Xu Lijun. Effect of pause time on cladding temperature field of multrchannel nickel-based alloy[J]. Optical Technique, 2020, 46(1): 96-101. [23]Dittrick S, Balla V K, Bose S, et al. In vitro wear rate and Co ion release of compositionally and structurally graded CoCrMo-Ti6Al4V structures[J]. Materials Science and Engineering, 2011, 31(4): 809-814. |