[1]Mizokami Y, Igari T, Kawashima F, et al. Development of structural design procedure of plate-fin heat exchanger for HTGR[J]. Nuclear Engineering and Design, 2013, 255: 248-262. [2]Zhang Z F, Wang Z G. Fatigue-cracking characteristics of a copper bicrystal when slip bands transfer through the grain boundary[J]. Materials Science and Engineering A, 2003, 343: 308-313. [3]Liu Yuan, Yang Sen. Molecular dynamic dimulation of energy and structural stability on twist grain boundary in bicrystal copper[J]. Procedia Engineering, 2012, 27: 1730-1737. [4]石树坤. 等温退火工艺对2205钢耐点蚀性能的影响[J]. 金属热处理, 2019, 44(3): 184-187. Shi Shukun. Effect of isothermal annealing on pitting corrosion resistance of 2205 steel[J]. Heat Treatment of Metals, 2019, 44(3): 184-187. [5]Zhang Z W, Wang W H, Zou Y, et al. Control of grain boundary character distribution and its effects on the deformation of Fe-6.5wt.%Si[J]. Journal of Alloys and Compounds, 2015, 639: 40-44. [6]Watanabe T, Tsurekawa S. Toughening of brittle materials by grain boundary engineering[J]. Materials Science and Engineering A, 2004, 387-389: 447-455. [7]Lind J, Li S F, Kumar M. Twin related domains in 3D microstructures of conventionally processed and grain boundary engineered materials[J]. Acta Materialia, 2016, 114: 43-53. [8]杨 辉, 夏 爽, 张子龙, 等, 晶界工程对于改善304奥氏体不锈钢焊接热影响区耐晶间腐蚀性能的影响[J]. 金属学报, 2015, 51(3): 333-340. Yang Hui, Xia Shuang, Zhang Zilong, et al. Improving the intergranular corrosion resistance of the weld heat-affected zone by grain boundary engineering in 304 austenitic stainless steel[J]. Acta Metallurgica Sinica, 2015, 51(3): 333-340. [9]Tan L, Allen T R, Busby J T. Grain boundary engineering for structure materials of nuclear reactors[J]. Journal of Nuclear Materials, 2013, 441: 661-666. [10]Wang X, Kurosawa K, Huang M, et al. Control of precipitation behaviour of Hastelloy-X through grain boundary engineering[J]. Materials Science and Technology, 2017, 33(17): 2078-2085. [11]秦升学, 王 艳, 张弘斌, 等, 固溶处理对GH99合金组织的影响[J]. 金属热处理, 2020, 45(8): 173-178. Qin Shengxue, Wang Yan, Zhang Hongbin, et al. Effect of solution treatment on microstructure of GH99 alloy[J]. Heat Treatment of Metals, 2020, 45(8): 173-178. [12]Palumbo G, Lehockey E M, Lin P. Application of grain boundary engineered materials[J]. JOM, 1998, 50(2): 40-43. [13]Field K G, Yang Y, Allen T R, et al. Defect sink characteristics of specific grain boundary types in 304 stainless steels under high dose neutron environments[J]. Acta Materialia, 2015, 89: 438-449. [14]Yamaura S, Igarashi Y, Tsurekawa S, et al. Structured-dependent intergranular oxidation in Ni-Fe polycrystalline alloy[J]. Acta Materialia, 1999, 47(4): 1163-1174. [15]Yamaura S, Tsurekawa S, Watanabe T. The control of oxidation-induced embrittlement by grain boundary engineering in rapidly solidified Ni-Fe alloy ribbons[J]. Materials Transactions, 2003, 44(7): 1494-1502. [16]Wang X Y, Dallemagne A, Hou Y Q, et al. Effect of thermomechanical processing on grain boundary character distribution of Hastelloy X alloy[J]. Materials Science and Engineering A, 2016, 669: 95-102. |