[1] 茹祥坤, 刘廷光, 夏 爽, 等. 形变及热处理对白铜B10合金晶界特征分布的影响[J]. 中国有色金属学报, 2013, 23(8): 2176-2181. Ru Xiangkun, Liu Tingguang, Xia Shuang, et al. Effect of deformation and heat-treatment on grain boundary distribution character of cupronickel B10 alloy[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(8): 2176-2181. [2] 方晓英, 刘志勇, Tikhonova M, 等. 多向锻造和单向轧制304不锈钢高温退火后的晶界面分布[J]. 金属学报, 2012, 48(8): 895-906. Fang Xiaoying, Liu Zhiyong, Tikhonova M, et al. Grain boundary plane distributions in 304 steel annealed at high temperature after a parallel processing of multiple forging and direct rolling[J]. Acta Metallurgica Sinica, 2012, 48(8): 895-906. [3] 韩 涛, 方晓英, 李 宁, 等. 晶界特征分布优化改善304不锈钢晶间腐蚀研究[J]. 热加工工艺, 2011, 40(14): 59-61, 109. Han Tao, Fang Xiaoying, Li Ning, et al. Grain boundary character distribution improving intergranular corrosion of 304 stainless steel[J]. Hot Working Technology, 2011, 40(14): 59-61, 109. [4] 胡长亮, 夏 爽, 李 惠, 等. 晶界网络特征对304不锈钢晶间应力腐蚀开裂的影响[J]. 金属学报, 2011, 47(7): 939-945. Hu Changliang, Xia Shuang, Li Hui, et al. Effect of grain boundary network on the intergranular stress corrosion cracking of 304 stainless steel[J]. Acta Metallurgica Sinica, 2011, 47(7): 939-945. [5] Randle V. Twinning-related grain boundary engineering[J]. Acta Materialia, 2004, 52(14): 4067-4081. [6] Randle V, Owen G. Mechanisms of grain boundary engineering[J]. Acta Materialia, 2006, 54(7): 1777-1783. [7] 王卫国, 方晓英, 蔡正旭, 等. 晶粒尺寸对冷轧退火纯Cu晶界特征分布的影响[J]. 金属学报, 2010, 46(7): 769-774. Wang Weiguo, Fang Xiaoying, Cai Zhengxu, et al. Effect of grain size on the grain boundary character distributions of cold rolled and annealed pure copper[J]. Acta Metallurgica Sinica, 2010, 46(7): 769-774. [8] Hu C, Shuang X, Hui L, et al. Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control[J]. Corrosion Science, 2011, 53(5): 1880-1886. [9] Shimada M, Kokawa H, Wang Z J, et al. Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering[J]. Acta Materialia, 2002, 50(9): 2331-2341. [10] Lin P, Palumbo G, Erb U, et al. Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600[J]. Scripta Metallurgica et Materiali, 1995, 33(9): 1387-1392. [11] 李 慧, 夏 爽, 周邦新, 等. 690合金中晶界网络分布的控制及其对晶间腐蚀性能的影响[J]. 中国材料进展, 2011, 30(5): 11-14. Li Hui, Xia Shuang, Zhou Bangxin, et al. Controlling the grain boundary network to enhance the intergranular corrosion resistance in alloy 690[J]. Materials China, 2011, 30(5): 11-14. [12] Wang W, Guo H. Effects of thermo-mechanical iterations on the grain boundary character distribution of Pb-Ca-Sn-Al alloy[J]. Materials Science and Engineering A, 2007, 445: 155-162. [13] Qiang Z, Tang R, Yin K, et al. Corrosion behavior of Hastelloy C-276 in supercritical water[J]. Corrosion Science, 2009, 51(9): 2092-2097. [14] Li Z, Han J S, Lu J J, et al. Cavitation erosion behavior of Hastelloy C-276 nickel-based alloy[J]. Journal of Alloys and Compounds, 2015, 619(20): 754-759. [15] 李海丰, 范洪远, 张 强, 等. C-276合金在650 ℃/25 MPa超临界水中的腐蚀行为[J]. 原子能科学技术, 2011, 45(7): 822-827. Li Haifeng, Fan Hongyuan, Zhang Qiang, et al. Corrosion behavior of C-276 alloy in supercritical water at 650 ℃/25 MPa[J]. Atomic Energy Science and Technology, 2011, 45(7): 822-827. [16] Jin S, He X, Li T, et al. Microstructural evolution in nickel alloy C-276 after Ar-ion irradiation at elevated temperature[J]. Materials Characterization, 2012, 72: 8-14. [17] Watanabe T. Grain boundary design and control for high temperature materials[J]. Materials Science and Engineering A, 1993, 166(1/2): 11-28. [18] Shimada M, Kokawa H, Wang Z J, et al. Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering[J]. Acta Materialia, 2002, 50(9): 2331-2341. [19] Xia S, Hui L, Liu T G, et al. Appling grain boundary engineering to alloy 690 tube for enhancing intergranular corrosion resistance[J]. Journal of Nuclear Materials, 2011, 416(3): 303-310. [20] Brandon D G. The structure of high-angle grain boundaries[J]. Acta Metallurgica, 1966, 14(11): 1479-1484. [21] Fang X, Zhang K, Guo H, et al. Twin-induced grain boundary engineering in 304 stainless steel[J]. Materials Science and Engineering A, 2007, 487(1/2): 7-13. [22] 王卫国, 周邦新, 冯 柳, 等. 冷轧变形Pb-Ca-Sn-Al合金在回复和再结晶过程中的晶界特征分布[J]. 金属学报, 2006, 42(7): 715-721. Wang Weiguo, Zhou Bangxin, Feng Liu, et al. Grain boundary character distributions (GBCD) of cold-rolled Pb-Ca-Sn-Al alloy during recovery and recrystallization[J]. Acta Metallurgica Sinica, 2006, 42(7): 715-721. [23] 饶 聪, 林 燕, 王卫国. Pb-Ca-Sn-Al合金Σ3晶界的形成条件[J]. 金属热处理, 2017, 42(10): 184-188. Rao Cong, Lin Yan, Wang Weiguo. Formation condition of Σ3 grain boundaries in a Pb-Ca-Sn-Al alloy[J]. Heat Treatment of Metals, 2017, 42(10): 184-188. |