[1] 于 谦. 耐候钢发展现状及展望[J]. 钢铁研究学报, 2007, 19(11): 1-4. Yu Qian. Development status and prospect of weathering steel[J]. Journal of Iron and Steel Research, 2007, 19(11): 1-4. [2] 陈付红, 高真凤, 黄 维, 等. 国内外铁路车辆用耐候钢板发展现状[J]. 上海金属, 2017, 39(1): 70-74. Chen Fuhong, Gao Zhenfeng, Huang Wei, et al. Development status of weathering steel plate for railway vehicles at home and abroad[J]. Shanghai Metals, 2017, 39(1): 70-74. [3] Clover D, Kinsella B, Pejcic B, et al. The influence of microstructure on the corrosion rate of various carbon steels[J]. Journal of Applied Electrochemistry, 2005, 35(2): 139-149. [4] 郭玉冰. 显微组织对高强微合金钢腐蚀行为的影响[D]. 天津: 天津大学, 2015. Guo Yubing. Effect of microstructure on corrosion behavior of high strength microalloy steel[D]. Tianjing: Tianjing University, 2015. [5] Lucio-Garcia M A, Gonzalez-Rodriguez J G, Casales M, et al. Effect of heat treatment on H2S corrosion of a micro-alloyed C-Mn steel[J]. Corrosion Science, 2009, 51(10): 2380-2386. [6] Zhao M C, Yang K. Strengthening improvement of sulfide stress cracking resistance in acicular ferrite pipeline steels by nano-sized carbonitrides[J]. Scripta Materialia, 2005, 52(9): 881-886. [7] Sarkar P P, Kumar P, Manna M K, et al. Microstructural influence on the electrochemical corrosion behavior of dual-phase steel in 3.5%NaC1 solution[J]. Materials Letters, 2005, 59(19/20): 2488-2491. [8] Manohar P A, Chandra T, Killmore C R. Continuous cooling transformation behaviour of microalloyed steels containing Ti, Nb, Mn and Mo[J]. ISIJ International, 1996, 36(12): 1486-1493. [9] Calvo J, Jung I H, Elwazri A M, et al. Influence of the chemical composition on transformation behaviour of low carbon microalloyed steels[J]. Materials Science and Engineering A, 2009, 520(1): 90-96. [10] Cizek P, Wynne B, Davies C, et al. Effect of composition and austenite deformation on the transformation characteristics of low-carbon and ultralow-carbon microalloyed steels[J]. Metallurgical and Materials Transactions A, 2002, 33(5): 1331-1349. [11] Zhao M C, Yang K, Xiao F R, et al. Continuous cooling transformation of undeformed and deformed low carbon pipeline steels[J]. Materials Science and Engineering A, 2003, 355(1): 126-136. [12] Chen Y, Zhang D T, Liu Y C, et al. Effect of dissolution and precipitation of Nb on the formation of acicular ferrite/bainite ferrite in low-carbon HSLA steels[J]. Materials Characterization, 2013, 84: 232-239. [13] Zhang C L, Cai D Y, Wang Y H, et al. Effects of deformation and Mo, Nb, V, Ti on continuous cooling transformation in Cu-P-Cr-Ni-Mo weathering steels[J]. Materials Characterization, 2008, 59(11): 1638-1642. [14] 徐 光. 金属材料CCT曲线测定及绘制[M]. 北京: 化学工业出版社, 2009: 142-144. Xu Guang. Determination and drawing of CCT curve of metal material[M]. Beijing: Chemical Industrial Press, 2009: 142-144. [15] Guo J, Shang C J, Yang S W, et al. Weather resistance of low carbon high performance bridge steel[J]. Materials and Design, 2009, 30: 129-134. [16] Yen H W, Chen P Y, Huang C Y, et al. Interphase precipitation of nanometer-sized carbides in a titanium-molybdenum-bearing low-carbon steel[J]. Acta Materialia, 2011, 59(16): 6264-6274. [17] 陈 俊, 吕梦阳, 唐 帅, 等. V-Ti微合金钢的组织性能及相间析出行为[J]. 金属学报, 2014, 50(5): 524-530. Chen Jun, Lü Mengyang, Tang Shuai, et al. Microstructure, mechanical properties and interphase precipitation behaviors in V-Ti microalloyed steel[J]. Acta Metallurgica Sinica, 2014, 50(5): 524-530. [18] Funakawa Y, Shiozaki T, Tomita K, et al. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides[J]. ISIJ International, 2004, 44(11): 1945-1951. |