[1] Staley J T, Liu J, Hunt J W H. Aluminum alloys for areostructures[J]. Advanced Materials and Processes, 1997, 152(4): 17-20. [2] Hirsch J. Recent development in aluminum for automotive applications[J]. Transactions of Nonferrous Metals Society of China, 2014, 24 (7): 1995-2002. [3] Heinz A, Haszler A, Keidel C, et al. Recent development in aluminum alloys for aerospace applications[J]. Materials Science and Engineering A, 2000, 280(1): 102-107. [4] Dursun T, Soutis C. Recent developments in advanced aircraft aluminum alloys[J]. Materials and Design, 2014, 56: 862-871. [5] Fridlyander I N, Sister V G, Grushko O E, et al. Aluminum alloys: Promising materials in the automotive industry[J]. Metal Science and Heat Treatment, 2002, 44(9/10): 365-370. [6] Pogatscher S, Antrekowitsch H, Leitner H, et al. Mechanisms controlling the artificial aging of Al-Mg-Si alloys[J]. Acta Materialia, 2011, 59(9): 3352-3363. [7] Yin D Y, Xiao Q, Chen Y Q, et al. Effect of natural ageing and pre-straining on the hardening behaviour and microstructural response during artificial aging of an Al-Mg-Si-Cu alloy[J]. Materials and Design, 2016, 95: 329-339. [8] Werinos M, Antrekowitsch H, Ebner T, et al. Hardening of Al-Mg-Si alloys: Effect of trace elements and prolonged natural aging[J]. Materials and Design, 2016, 107: 257-268. [9] Cao L F, Rometsch Paul A, Couper Malcolm J. Clustering behaviour in an Al-Mg-Si-Cu alloy during natural ageing and subsequent under-ageing[J]. Materials Science and Engineering A, 2013, 559: 257-261. [10] Takaki Y, Aruga Y, Kozuka M, et al. Effects of pre-aging and natural aging on bake hardening behavior in Al-Mg-Si alloys[J]. Materials Science Forum, 2014, 794-796: 1026-1031. [11] Luo A, Lloyd D J, Gupta A, et al. Precipitation and dissolution kinetics in Al-Li-Cu-Mg alloy 8090[J]. Acta Metallurgica et Materialia, 1993, 41(3): 769-773. |