[1] 赵玉良, 林树国, 王宇航. 高性能齿轮关键制造技术现状及发展建议[J]. 重型机械, 2013(2): 5-8. Zhao Yuliang, Lin Shuguo, Wang Yuhang. Current situation and development suggestion for key manufacturing technologies of high-performance gears[J]. Heavy Machinery, 2013(2): 5-8. [2] 赖 宏, 刘天模. 不同形状钢件表面渗碳扩散过程数值模拟[J]. 重庆大学学报(自然科学版), 2002, 25(12): 46-48. Lai Hong, Liu Tianmo. Case-carburization numerical modeling and craft optimization on steel parts of various shapes[J]. Journal of Chongqing University (Natural Science Edition), 2002, 25(12): 46-48. [3] Sobusiak T. The influence of carburizing parameters on carbon transfer coefficient[J]. Journal of Material Heat Treatment, 2004, 25(5): 390-394. [4] 董秦铮, 朱仲为. 用钢箔渗碳法测定β系数的问题和建议[J]. 热处理, 2014, 29(4): 1-7. Dong Qinzheng, Zhu Zhongwei. Problem and suggestion in relation to determining β coefficient by steel foil carbonizing method[J]. Heat Treatment, 2014, 29(4): 1-7. [5] 王顺兴, 刘 勇, 魏世忠. 气体渗碳数学模型及物理参数的计算[J]. 材料热处理学报, 2004, 23(1): 36-39. Wang Shunxing, Liu Yong, Wei Shizhong. The model for gas carburizing and calculating of physic parameters[J]. Transactions of Materials Heat Treatment, 2004, 23(1): 36-39. [6] 佟伟平, 任素华, 何长树, 等. 气体渗碳过程中表面碳浓度增长动力学研究[J]. 金属热处理, 2005, 30(S1): 128-131. Tong Weiping, Ren Shuhua, He Changshu, et al. The kinetics of increase in surface carbon concentration during gas carburization[J]. Heat Treatment of Metals, 2005, 30(S1): 128-131. [7] 陈 卫, 刘 勇, 王顺兴. 碳的扩散系数和传递系数的一种计算方法[J]. 河南科技大学学报(自然科学版), 2003, 24(3): 11-13. Hen Wei, Liu Yong, Wang Shunxing. A calculating method for carbon diffusivity and transfer coefficient[J]. Journal of Luoyang Institute of Technology (Natural Science Edition), 2003, 24(3): 11-13. [8] 樊天正. 气体渗碳扩散过程模拟计算[C]//西北五省区热处理学术交流会, 2000: 168-173. [9] 刘博勋, 张 幸, 顾剑锋. 基于钢箔渗碳的碳传递系数的精确测定[J]. 金属热处理, 2016, 41(1): 211-216. Liu Boxun, Zhang Xing, Gu Jianfeng. Accurate determination of carbon mass transfer coefficient based on steel foil carburization[J]. Heat Treatment of Metals, 2016, 41(1): 211-216. [10] 胡赓祥, 蔡 珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2010. [11] 孙少权, 杜红兵, 闫牧夫. 连续炉中稀土渗碳数值模拟[C]//中国热处理活动周暨全国热处理生产技术改造会议. 2005: 158-161. [12] Sievers U, Schulz S. Korrelation thermodynamischer eigenschaften der idealen gase Ar, CO, H2, N2, O2, CO2, H2O, CH4 und C2H4[J]. Chemie Ingenieur Technik, 1981, 53(6): 459-461. [13] 张红梅, 温 静, 张晗伟, 等. 丙烷热裂解反应机理及路径的研究[J]. 青岛科技大学学报(自然科学版), 2014, 35(2): 129-132. Zhang Hongmei, Wen Jing, Zhang Hanwei, et al. Molecular simulation of sinetic model of propane thermal cracking reaction[J]. Journal of Qingdao University of Science and Technology(Natural Science Edition), 2014, 35(2): 129-132. [14] Collins R, Gunnarson S, Thulin D. Influence of reaction rate on gas carburizing steel in a CO, H2, CO2, H2O, CH4, N2 atmosphere[J]. Journal of the Iron and Steel Institute, 1972, 11(2): 777-84 [15] Slycke J, Ericsson T. A study of reactions occurring during the carbonitriding process[J]. Journal of Heat Treating, 1981, 2(2): 97-112. |