[1]Scott H, Sidhu G, Fazeli F, et al. Microstructural evolution of a hot-rolled microalloyed complex phase steel[J]. Canadian Metallurgical Quarterly, 2017, 56(1): 67-75. [2]黄玉龙, 张玉龙. 超高强度复相钢CP800的相变行为及热轧工艺研究[J]. 上海金属, 2018, 40(4): 68-73. Huang Yulong, Zhang Yulong. Study on the transformation behavior and hot rolling process for ultra-high strength complex phase steel CP800[J]. Shanghai Metals, 2018, 40(4): 68-73. [3]刘家骅, 王 磊, 杨玉芳, 等. 载荷速率对充氢SA508-3 钢断裂韧性的影响[J]. 金属热处理, 2020, 45(10): 232-235. Liu Jiahua, Wang Lei, Yang Yufang, et al. Hydrogen induced delayed fracture behavior of cold hardening microalloyed bainitic steel[J]. Heat Treatment of Metals, 2020, 45(10): 232-235. [4]Allen Q S, Nelson T W. Microstructural evaluation of hydrogen embrittlement and successive recovery in advanced high strength steel[J]. Journal of Materials Processing Technology, 2019, 265: 12-19. [5]Dwivedi S K, Vishwakarma M. Hydrogen embrittlement in different materials: A review[J]. International Journal of Hydrogen Energy, 2018, 43(46): 21603-21616. [6]Song J, Curtin W A. Atomic mechanism and prediction of hydrogen embrittlement in iron[J]. Nature Materials, 2013, 12(2): 145-151. [7]Liu Q, Zhou Q, Venezuela J, et al. The role of the microstructure on the influence of hydrogen on some advanced high-strength steels[J]. Materials Science and Engineering A, 2018, 715: 370-378. [8]Liu Q, Venezuela J, Zhang M, et al. Hydrogen trapping in some advanced high strength steels[J]. Corrosion Science, 2016, 111: 770-785. [9]Venezuela J, Zhaou Q, Liu Q, et al. Influence of hydrogen on the mechanical and fracture properties of some martensitic advanced high strength steels in simulated service conditions[J]. Corrosion Science, 2016, 111: 602-624. [10]Venezuela J, Blangch J, Zulkiply A, et al. Further study of the hydrogen embrittlement of martensitic advanced high-strength steel in simulated auto service conditions[J]. Corrosion Science, 2018, 135: 120-135. [11]孙永伟, 陈继志, 刘 军. 1000 MPa级0Cr16Ni5Mo钢的氢脆敏感性研究[J]. 金属学报, 2015, 51(11): 1315-1324. Sun Yongwei, Chen Jizhi, Liu Jun. Study on hydrogen embrittlement susceptibility of 1000 MPa grade 0Cr16Ni5Mo steel[J]. Acta Metallurgica Sinica, 2015, 51(11): 1315-1324. [12]Liu Q, Zhou Q, Venezuela J, et al. Evaluation of the influence of hydrogen on some commercial DP, Q&P and TWIP advanced high-strength steels during automobile service[J]. Engineering Failure Analysis, 2018, 94: 249-273. [13]Momotani Y, Shibata A, Terada D, et al. Effect of strain rate on hydrogen embrittlement in low-carbon martensitic steel[J]. International Journal of Hydrogen Energy, 2017, 42(5): 3371-3379. [14]Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11): 1702-1706. [15]Choo W Y, Lee J Y. Thermal analysis of trapped hydrogen in pure iron[J]. Metallurgical Transactions A, 1982, 13(1): 135-140. [16]Escobar D P, Verbeken K, Duprez L, et al. Evaluation of hydrogen trapping in high strength steels by thermal desorption spectroscopy[J]. Materials Science and Engineering A, 2012, 551: 50-58. [17]谭文志, 杜元龙, 傅 超, 等. 阴极保护导致 ZC-120 钢在海水中环境氢脆[J]. 材料保护, 1988, 21(3): 10-13. Tan Wenzhi, Du Yuanlong, Fu Chao, et al. Environment embrittlement caused by cathodic protection of ZC-120 steel in sea water[J]. Materials Protection, 1988, 21(3): 10-13. [18]Loidl M, Kolk O, Veith S, et al. Characterization of hydrogen embrittlement in automotive advanced high strength steels[J]. Materialwissenschaft und Werkstofftechnik, 2011, 42(12): 1105-1110. [19]Yazdipour N, Dunne D P, Pereloma E V. Effect of grain size on the hydrogen diffusion process in steel using cellular automaton approach[C]//Materials Science Forum. Trans Tech Publications, 2012, 706: 1568-1573. [20]Bai Y, Tian Y, Gao S, et al. Hydrogen embrittlement behaviors of ultrafine-grained 22Mn-0.6C austenitic twinning induced plasticity steel[J]. Journal of Materials Research, 2017, 32(24): 4592-4604. |