[1]杨才福, 陈雪慧, 王瑞珍. 高强度建筑钢筋质量分析及标准修改建议[J]. 钢铁, 2017, 52(10): 94-103. Yang Caifu, Chen Xuehui, Wang Ruizhen. Quality assessment and suggestion of standard revision for high strength rebars in China[J]. Iron and Steel, 2017, 52(10): 94-103. [2]麻 晗, 王世芳. 节能型钢筋、线材的研发与生产实践[J]. 金属热处理, 2013, 38(7): 1-9. Ma Han, Wang Shifang. Development and practice of energy saving steel reinforcing bar and wire[J]. Heat Treatment of Metals, 2013, 38(7): 1-9. [3]周 云, 杨晓伟, 陈焕德, 等. 加热温度对600 MPa级高强钢筋组织及性能的影响[J]. 钢铁, 2020, 55(1): 107-113. Zhou Yun, Yang Xiaowei, Chen Huande, et al. Effect of heating temperature on microstructure and properties of 600 MPa grade high strength steel rebars[J]. Iron and Steel, 2020, 55(1): 107-113. [4]杨晓伟, 周 云, 陈焕德, 等. 钛微合金化HRB400E钢筋组织性能及强化机理[J]. 中国冶金, 2020, 30(1): 68-72. Yang Xiaowei, Zhou Yun, Chen Huande, et al. Microstructure and strengthening mechanisms of Ti microalloyed HRB400E rebar[J]. China Metallurgy, 2020, 30(1): 68-72. [5]翟永臻, 夏 昊, 张 昕, 等. 氮含量对V-N微合金化高强钢筋微观组织及力学性能的影响[J]. 金属热处理, 2018, 43(8): 31-34. Zhai Yongzhen, Xia Hao, Zhang Xin, et al. Effect of nitrogen content on microstructure and mechanical properties of V-N microalloyed high strength steel bar[J]. Heat Treatment of Metals, 2018, 43(8): 31-34. [6]Wang J J, Kang Y L, Yang C S, et al. Effect of heating temperature on the grain size and titanium solid-solution of titanium microalloyed steels[J]. Materials and Application, 2019, 10: 558-567. [7]Zhang C L, Fang W, Cai B R, et al. Austenite grain growth and its effect on splitting fracture property of a V-N microalloyed medium carbon steel connecting rod[J]. Journal of Iron and Steel Research International, 2019, 26: 875-881. [8]李 阳, 左龙飞, 张建春, 等. 合金元素对HRB600钢筋强屈比性能的影响[J]. 材料热处理学报, 2016, 37(S1): 61-67. Li Yang, Zuo Longfei, Zhang Jianchun, et al. Influence of alloying elements on yield strength ratio of HRB600 steel[J]. Transactions of Materials and Heat Treatment, 2016, 37(S1): 61-67. [9]Shen X J, Tang S, Chen J, et al. Grain refinement in surface layers through deformation-induced ferrite transformation inmicroalloyed steel plate[J]. Materials and Design, 2017, 113: 137-141. [10]周 煌, 刘铖霖, 曹建春, 等. 高强抗震钢筋原位拉伸的微观组织变形机理[J]. 钢铁研究学报, 2018, 30(10): 822-829. Zhou Huang, Liu Chenglin, Cao Jianchun, et al. Microstructure deformation mechanism of SEM in-situ tension in high-strength anti-seismic rebars[J]. Journal of Iron and Steel Research, 2018, 30(10): 822-829. [11]段桂花, 张 平, 李金许, 等. 铁素体和珠光体含量影响变形过程的原位研究[J]. 北京科技大学学报, 2014, 36(8): 1032-1038. Duan Guihua, Zhang Ping, Li Jinxu, et al. In situ studies on the effect of ferrite and pearlite contents on the deformation process[J]. Journal of University of Science and Technology Beijing, 2014, 36(8): 1032-1038. [12]张 可, 孙新军, 张明亚, 等. Ti-V-Mo复合微合金钢中(Ti, V, Mo)C在γ/α中沉淀析出的动力学[J]. 金属学报, 2018, 54(8): 1122-1130. Zhang Ke, Sun Xinjun, Zhang Mingya, et al. Kinetics of (Ti, V, Mo)C precipitated in γ/α matrix of Ti-V-Mo complex microalloyed steel[J]. Acta Metallurgica Sinica, 2018, 54(8): 1122-1130. [13]吴 静, 张恒华. 铌微合金钢析出相的形成与长大规律[J]. 金属热处理, 2011, 36(4): 4-7. Wu Jing, Zhang Henghua. Formation and growth rules of participate in niobium micro-alloyed steel[J]. Heat Treatment of Metals, 2011, 36(4): 4-7. [14]Gong P, Liu X G, Rijkenberg A, et al. The effect of molybdenum on interphase precipitation and microstructures in microalloyed steels containing titanium and vanadium[J]. Acta Materialia, 2018, 161: 374-387. [15]陈 翱, 李忠华, 何 康, 等. 钛微合金钢形变诱导析出规律的热模拟[J]. 材料热处理学报, 2019, 40(5): 162-167. Chen Ao, Li Zhonghua, He Kang, et al. Thermal simulation of stress-induced precipitation of titanium microalloyed steel[J]. Transactions of Materials and Heat Treatment, 2019, 40(5): 162-167. [16]马红旭, 李友国. 硅钢中析出物的尺寸分布以及体积分数测定[J]. 材料科学与工程, 2002, 20(3): 328-330. Ma Hongxu, Li Youguo. Measurement of size distribution and volume fraction of precipitates in silicon steel[J]. Material Science and Engineering, 2002, 20(3): 328-330. |