[1]Wang X Y, Liu X F, Xie J. Mechanism of surface texture evolution in pure copper strips subjected to double rolling[J]. Progress in Natural Science: Materials International, 2014, 24(1): 75-82. [2]Fu Y B, Cui J, Cao Z Q. Cracks of Cu-Cr-Zr alloy bars under planetary rolling[J]. Rare Metal Materials and Engineering, 2015, 44(3): 567-570. [3]Chen J S, Wang J F, Xiao X P, et al. Contribution of Zr to strength and grain refinement in Cu Cr Zr alloy[J]. Materials Science and Engineering A, 2019, 756: 464-473. [4]Purcek G, Yanar H, Demirtas M, et al. Optimization of strength, ductility and electrical conductivity of Cu-Cr-Zr alloy by combining multi-route ECAP and aging[J]. Materials Science and Engineering, 2016, 649: 114-122. [5]刘瑞蕊, 周海涛, 周 啸, 等. 高强高导铜合金的研究现状及发展趋势[J]. 材料导报, 2012, 26(19): 100-105. Liu Ruixin, Zhou Haitao, Zhou Xiao, et al. Present situation and future prospect of high-strength and high-conductivity Cu alloy[J]. Materials Reports, 2012, 26(19): 100-105. [6]Khomskaya I V, Zeldovich V I, Frolova N Y, et al. Investigation of Cu5Zr particles precipitation in Cu-Zr and Cu-Cr-Zr alloys subjected to quenching and high strain rate deformation[J]. Materials Letters, 2019, 9(4): 400-404. [7]Chen X H, Zhou H L, Zhang T, et al. Mechanism of interaction between the Cu/Cr interface and its chemical mixing on tensile strength and electrical conductivity of a Cu-Cr-Zr alloy[J]. Materials & Design, 2019, 180: 107976. [8]陈金水, 王俊峰, 朱明彪, 等. Cu-Cr-Zr系合金中Zr含量对初生相的影响[J]. 金属热处理, 2018, 43(7): 20-27. Chen Jinshui, Wang Junfeng, Zhu Mingbiao, et al. Effect of Zr content on primary phase in Cu-Cr-Zr alloy[J]. Heat Treatment of Metals, 2018, 43(7): 20-27. [9]Sarkeeva E A, Sitdikov V D, Raab G I, et al. The effect of Cr and Zr content on the microstructure and properties of the Cu-Cr-Zr system alloy[J]. IOP Conference Series Materials Science and Engineering, 2018, 447: 012065. [10]龚留奎, 袁继慧, 罗富鑫, 等. 合金化对Cu-Cr-Zr-Ti合金组织与性能的影响[J]. 金属热处理, 2018, 43(8): 7-12. Gong Liukui, Yuan Jihui, Luo Fuxin, et al. Effect of alloying on microstructure and properties of Cu-Cr-Zr-Ti alloy[J]. Heat Treatment of Metals, 2018, 43(8): 7-12. [11]Shangina D V, Bochvar N R, Morozova A I, et al. Effect of chromium and zirconium content on structure, strength and electrical conductivity of Cu-Cr-Zr alloys after high pressure torsion[J]. Materials Letters, 2017, 199: 46-49. [12]蔡 薇, 高鹏哲, 陈辉明, 等. Cu-Cr-Zr-Ti合金高温热变形行为及热加工图[J]. 金属热处理, 2019, 44(8): 147-153. Cai Wei, Gao Pengzhe, Chen Huiming, et al. High temperature deformation behavior and hot processing map of Cu-Cr-Zr-Ti alloy[J]. Heat Treatment of Metals, 2019, 44(8): 147-153. [13]Huang Y C, Li M, Ma C Q, et al. Flow behaviour constitutive model of CuCrZr alloy and 35CrMo steel based on dynamic recrystallization softening effect under elevated temperature[J]. Journal of Central South University, 2019, 26(6): 1550-1562. [14]任军帅, 李欣琳, 肖松涛, 等. 新型Ti-Al-Zr-Nb-Mo-Si 钛合金热变形行为及于BP神经网络模型的本构关系研究[J]. 材料导报, 2020, 34(S1): 283-288, 303. Ren Junshuai, Li Xinlin, Xiao Songtao, et al. Hot deformation behavior and constitutive relationship of Ti-Al-Zr-Nb-Mo-Si alloy based on artificial neural network model[J]. Materials Reports, 2020, 34(S1): 283-288, 303. [15]刘少飞, 屈银虎, 王崇楼, 等. 金属和合金高温变形过程本构模型的研究进展[J]. 材料导报, 2018, 32(13): 2241-2251, 2277. Liu Shaofei, Qu Yinhu, Wang Chonglou, et al. Advances in constitutive modles of metals and alloys during hot deformation[J]. Materials Reports, 2018, 32(13): 2241-2251, 2277. [16]Qian X Y, Peng X B, Song Y T, et al. Dynamic constitutive relationship of CuCrZr alloy based on Johnson-Cook model[J]. Nuclear Materials and Energy, 2020, 24: 100768. [17]丁宗业, 贾淑果, 宁向梅, 等. Cu-Cr-Zr合金的高温热变形行为[J]. 中国有色金属学报, 2020, 30(8): 1811-1817. Ding Zongye, Jia Shuguo, Ning Xiangmei, et al. Hot deformation behavior of Cu-Cr-Zr alloy[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(8): 1811-1817. [18]Rusinek A, JA Rodríguez-Martínez, Arias A. A thermo-viscoplastic constitutive model for FCC metals with application to OFHC copper[J]. International Journal of Mechanical Sciences, 2010, 52(2): 120-135. [19]Meng A, Nie J F, Wei K, et al. Optimization of strength, ductility and electrical conductivity of a Cu-Cr-Zr alloy by cold rolling and aging treatment[J]. Vacuum, 2019, 167: 329-335. [20]Abd EL-Aty A, Xu Y, Zhang S H, et al. Impact of high strain rate deformation on the mechanical behavior, fracture mechanisms and anisotropic response of 2060 Al-Cu-Li alloy[J]. Journal of Advanced Research, 2019, 18: 19-37. [21]Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48. [22]Lin Y C, Chen X M, Liu G. A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel[J]. Materials Science and Engineering A, 2010, 527(26): 6980-6986. [23]Niu L Q, Cao M, Liang Z L, et al. A modified Johnson-Cook model considering strain softening of A356 alloy[J]. Materials Science and Engineering A, 2020, 789: 139612. [24]Wang Y B, Zhang C S, Yang Y, et al. The identification of improved Johnson-Cook constitutive model in a wide range of temperature and its application in predicting FLCs of Al-Mg-Li sheet[J]. Journal of Materials Research and Technology, 2020, 9(3): 3782-3795. [25]Chakrabarty R, Song J. A modified Johnson-Cook material model with strain gradient plasticity consideration for numerical simulation of cold spray process[J]. Surface and Coatings Technology, 2020, 397: 125981. |