[1]Molinari A, Pellizzari M, Gialanella S, et al. Effect of deep cryogenic treatment on the mechanical properties of tool steels[J]. Journal of Materials Processing Technology, 2001, 118(1-3): 350-355. [2]Firouzdor V, Nejati E, Khomamizadeh F. Effect of deep cryogenic treatment on wear resistance and tool life of M2 HSS drill[J]. Journal of Materials Processing Technology, 2008, 206(1-3): 467-472. [3]Cajner F, Vojteh L, Landek D, et al. Effect of deep-cryogenic treatment on high speed steel properties[J]. Materials and Manufacturing Processes, 2009, 24(7-8): 743-746. [4]Wu C C, Chen W C, Chen L H. Effects of cryogenic treatment on mechanical property and microstructure of JIS SKH51 high-speed steel[J]. IOP Conference Series: Materials Science and Engineering, 2015, 103(1): 012022. [5]Yan X G, Pang S Q, Li Y T, et al. Study on the life of high speed steel taps with cryogenic treatment[J]. Advanced Materials Research, 2012, 426: 317-320. [6]Mohan Lal D, Renganarayanan S, Kalanidhi A. Cryogenic treatment to augment wear resistance of tool and die steels[J]. Cryogenics, 2001, 41(3): 149-155. [7]王启明, 成国光, 黄 宇. M2高速钢大尺寸碳化物的形貌特征及析出机理[J]. 钢铁, 2018, 53(1): 65-71. Wang Qiming, Cheng Guoguang, Huang Yu. Study on precipitation mechanism of large carbides in M2 high speed steel[J]. Iron and Steel, 2018, 53(1): 65-71. [8]罗 迪, 邢国华. M2高速钢中的M2C碳化物[J]. 材料科学进展, 1990, 4(3): 232-236. Luo Di, Xing Guohua. M2C carbide in M2 high speed tool steel[J]. Materials Science Progress, 1990, 4(3): 232-236. [9]Fredriksson H, Hillert M, Nica M. Decomposition of the M2C carbide in high speed steel[J]. Scandinavian Journal of Metallurgy, 1979, 8(3): 115-122. [10]迟宏宵, 马党参, 吴立志, 等. M2高速钢中M2C共晶碳化物的相变行为[J]. 金属热处理, 2010, 35(5): 19-22. Chi Hongxiao, Ma Dangshen, Wu Lizhi, et al. Phase transition characteristics of M2C eutectic carbide in M2 high speed steel[J]. Heat Treatment of Metals, 2010, 35(5): 19-22. [11]程巨强, 郭金刚. 淬火温度对M2Al高速钢组织和硬度的影响[J]. 铸造技术, 2005(9): 810-812. Cheng Juqiang, Guo Jingang. Influence of quenching on microstructure and hardness of M2Al high speed steel[J]. Foundry Technology, 2005(9): 810-812. [12]侯晓霞. 淬火温度对M2高速钢力学性能的影响[J]. 热加工工艺, 2010, 39(6): 133-134. Hou Xiaoxia. Effect of quenching temperature on mechanical properties of M2 high-speed steel[J]. Hot Working Technology, 2010, 39(6): 133-134. [13]陈 晨, 李捷霄, 李忠文, 等. M2高速钢经循环深冷处理后组织及性能研究[J]. 热加工工艺, 2015, 44(18): 211-213. Chen Chen, Li Jiexiao, Li Zhongwen, et al. Study on microstructure and properties of M2 high speed steel treated by repeated cryogenic treatment[J]. Hot Working Technology, 2015, 44(18): 211-213.[14]Gill S S, Singh J, Singh R, et al. Effect of cryogenic treatment on AISI M2 high speed steel: Metallurgical and mechanical characterization[J]. Journal of Materials Engineering & Performance, 2012, 21(7): 1320-1326. [15]卢易枫, 冯春丽. 冷处理对W18Cr4V钢组织及性能的影响[J]. 铸造技术, 2015(4): 911-912. Lu Yifeng, Feng Chunli. Influence of cold treatment on microstructure and properties of W18Cr4V steel[J]. Foundry Technology, 2015(4): 911-912. [16]李士燕, 曹规循, 周国萍. 残余奥氏体的形态和分布对9SiCr工具钢强韧性的影响[J]. 甘肃工业大学学报, 1992(3): 65-71. Li Shiyan, Cao Guixun, Zhou Guoping. The effect of the shape and distribution of retained austenite on strength-toughness properties of 9SiCr tool steel[J]. Journal of Gansu University of Technology, 1992(3): 65-71. [17]樊东黎. 钢的冷处理和深冷处理[J]. 热处理, 2010, 25(6): 1-6. Fan Dongli. Subzero and cryogenic treatments of steel[J]. Heat Treatment, 2010, 25(6): 1-6. |