[1]Miller W S, Zhuang L, Bottema J, et al. Recent development in aluminum alloys for the automotive industry[J]. Materials Science and Engineering A, 2000, 280(1): 37-49. [2]Hirsch J. Recent development in aluminum for automotive applications[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7): 1995-2002. [3]Henriksson F, Johansen K. On material substitution in automotive BIWs-from steel to aluminum body sides[J]. Procedia CIRP, 2016, 50: 683-688. [4]杨守杰, 戴圣龙. 航空铝合金的发展回顾与展望[J]. 材料导报, 2005(2): 76-80. Yang Shoujie, Dai Shenglong. A glimpse at the development and application of aluminum alloys in aviation industry[J]. Materials Review, 2005(2): 76-80. [5]Cao C, Zhang D, Zhuang L Z, et al. Improved age-hardening response and altered precipitation behavior of Al-5.2Mg-0.45Cu-2.0Zn alloy with pre-aging treatment[J]. Journal of Alloys and Compounds, 2017, 691: 40-43. [6]Yang R X, Liu Z Y, Ying P Y, et al. Multistage-aging process effect on formation of GP zones and mechanical properties in Al-Zn-Mg-Cu alloy[J]. Transactions of Nonferrous Metals Society of China, 2016, 25(5): 1183-1190. [7]许晓静, 王子路, 陆文俊, 等. 固溶-大变形-时效下7085铝合金的强化机理[J]. 稀有金属材料与工程, 2017(4): 1008-1012. Xu Xiaojing, Wang Zilu, Lu Wenjun, et al. Strengthening mechanisms of 7085 aluminum alloy by solution-large deformation-aging[J]. Rare Metal Materials and Engineering, 2017(4): 1008-1012. [8]Chen S Y, Chen K H, Peng G S, et al. Effect of heat treatment on hot deformation behavior and microstructure evolution of 7085 aluminum alloy[J]. Journal of Alloys and Compounds, 2012, 537: 338-345. [9]Bennett T A, Petrov R H, Kestens L A I. Effect of particles on texture banding in an aluminium alloy[J]. Scripta Materialia, 2010, 62(2): 78-81. [10]Jiang F L, Zurob H S, Purdy G R, et al. Characterizing precipitate evolution of an Al-Zn-Mg-Cu based commercial alloy during artificial aging and non-isothermal heat treatments by in situ electrical resistivity monitoring[J]. Materials Characterization, 2016, 117: 47-56. |