[1]周平安. 磨损失效分析及耐磨材料的现状和展望[J]. 铸造, 2000, 49(1): 23-25, 42. Zhou Ping'an. The present and future of wear lose efficacy analysis and wear-resisting metals[J]. Foundry, 2000, 49(1): 23-25, 42. [2]张立波, 陈迪林. 铸造抗磨材料的发展概况与趋势[J]. 现代铸铁, 1999(3): 12-15. Zhang Libo, Chen Dilin. Development situation and tendency of cast anti-wear materials[J]. Modern Cast Iron, 1999(3): 12-15. [3]郎世平. 国内球磨机的现状与发展创新[J]. 矿山机械, 2011, 39(6): 80-84. Lang Shiping. Actuality and development innovation of cone crushers in China[J]. Mining and Processing Equipment, 2011, 39(6): 80-84. [4]匡利华. 低合金耐磨钢破碎机衬板制造工艺及性能研究[D]. 太原: 太原科技大学, 2010. [5]侯晋梅. 新型高锰钢衬板制造工艺及性能分析[D]. 太原: 太原科技大学, 2014. [6]王祖宾. 低合金高强度钢[M]. 北京: 原子能出版社, 1996. [7]武兆洋, 平宪忠, 郑宝超, 等. 不同水基淬火介质对ZG30CrMnSiMo低合金钢组织和耐磨性的影响[J]. 金属热处理, 2021, 46(5): 60-65. Wu Zhaoyang, Ping Xianzhong, Zheng Baochao, et al. Effect of different water-based quenching media on microstructure and wear resistance of ZG30CrMnSiMo low alloy steel[J]. Heat Treatment of Metals, 2021, 46(5): 60-65. [8]李灿明. 淬火工艺对耐磨钢NM400组织性能的影响[J]. 金属热处理, 2021, 46(6): 69-73. Li Canming. Effect of quenching on microstructure and properties of wear-resistant steel NM400[J]. Heat Treatment of Metals, 2021, 46(6): 69-73. [9]王跃华. 耐磨管道用低合金耐磨钢的组织与性能[J]. 金属热处理, 2017, 42(4): 131-134. Wang Yuehua. Microstructure and properties of low alloy wear resistant steel for wear-resisting pipe[J]. Heat Treatment of Metals, 2017, 42(4): 131-134. [10]温浩宇, 马 瑜, 王联波, 等. 热处理对中碳低合金耐磨钢组织与耐磨性的影响[J]. 材料热处理学报, 2011, 32(12): 72-77. Wen Haoyu, Ma Yu, Wang Lianbo, et al. Influence of heat treatment on microstructure and wear resistance of a medium-carbon-low-alloy wear-resistant steel[J]. Transactions of Materials and Heat Treatment, 2011, 32(12): 72-77. [11]贺年兵, 唐建新. 合金元素对低合金耐磨铸钢力学性能的影响[J]. 热加工工艺, 2005(1): 3-4, 7. He Nianbing, Tang Jianxin. Effect of alloy elements on mechanical property of low alloy wear resistant cast steel[J]. Hot Working Technology, 2005(1): 3-4, 7. [12]丁忠发, 尹付成, 李洁翡, 等. Fe-Mo-Cr-Ni耐磨合金成分和热处理工艺对组织及性能的影响[J]. 材料热处理学报, 2015, 36(7): 36-41. Ding Zhongfa, Yin Fucheng, Li Jiefei, et al. Effects of composition and heat treatment on microstructure and properties of Fe-Mo-Cr-Ni wear-resistant alloys[J]. Transactions of Materials and Heat Treatment, 2015, 36(7): 36-41. [13]谢振家, 尚成嘉, 周文浩, 等. 低合金多相钢中残余奥氏体对塑性和韧性的影响[J]. 金属学报, 2016, 52(2): 224-232. Xie Zhenjia, Shang Chengjia, Zhou Wenhao, et al. Effect of retained austenite on ductility and toughness of a low alloyed multi-phase steel[J]. Acta Metallurgica Sinica, 2016, 52(2): 224-232. [14]王汝杰, 裴中正, 宋仁伯, 等. 衬板用超高强度空冷贝-马复相铸钢的热处理工艺优化[J]. 金属热处理, 2017, 42(6): 108-114. Wang Rujie, Pei Zhongzheng, Song Renbo, et al. Optimization of heat treatment process of ultra high strength air cooling bainite-martensite multiphase cast steel for crusher liner[J]. Heat Treatment of Metals, 2017, 42(6): 108-114. [15]Ebrahimian A, Ghasemi Banadkouki S S. Mutual mechanical effects of ferrite and martensite in a low alloy ferrite-martensite dual phase steel[J]. Journal of Alloys and Compounds, 2017, 708: 43-54. [16]Kadkhodapour J, Schmauder S, Raabe D, et al. Experimental and numerical study on geometrically necessary dislocations and nonhomogeneous mechanical properties of the ferrite phase in dual phase steels[J]. Acta Materialia, 2011, 59(11): 4387-4394. [17]Rodriguez R, Gutierrez I. Correlation between nanoindentation and tensile properties influence of the indentation size effect[J]. Materials Science and Engineering A, 2003, 361(1/2): 377-384. [18]Lu Z, Zhou Y, Rao Q, et al. An investigation of the abrasive wear behavior of ductile cast iron[J]. Journal of Materials Processing Technology, 2001, 116(2): 176-181. [19]Xu Xiaojun, Sybrand van der Zwaag, Wei Xu. The scratch and abrasive wear behaviour of a tempered martensitic construction steel and its dual phase variants[J]. Wear, 2016(358/359): 80-88. [20]Efremenko V G, Shimizu K, Noguchi T, et al. Chabak, Impact-abrasive-corrosion wear of Fe-based alloys: Influence of microstructure and chemical composition upon wear resistance[J]. Wear, 2013, 305(1/2): 155-165. |